Low Cost Ceramic-Matrix Composites for Harsh Environment Heat Exchanger Applications

Contract Number: DE-EE0008318 UTRC/Oak Ridge National Lab/MR&D Sept. 2018 – Aug. 2020

Brian St. Rock/Rajiv Ranjan, United Technologies Research Center

U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. June 11-12, 2019

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Project Overview

Glass Ceramix Matrix Composite (GCMC) in new HX topology

Concept

Timeline & Budget

Award issued Sept 2018 Budget Period 1 = Sept 2018 to Aug 2019 Budget Period 2 = Sept 2019 to Aug 2020

	Budget Period 1	Budget Period 2	Total Planned Funding
DOE Funded	\$0.493M	\$0.843M	\$1.336M
Project Cost Share	\$0.124M	\$0.210M	\$0.334M

Barriers/Risks

Reliable /repeatable fabrication of HX-relevant features

Bonding and joint design and scalable assembly

Leak-free seal coating

Partners

UTRC (Prime)

Heat exchanger (HX) design & testing Materials technology Bonding process

MR&D

CMC mechanical modeling Fabrication plan support

ORNL

CVD seal coating

Materials characterization

Technical Innovation

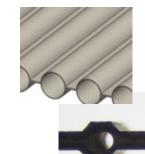
Unique GCMC material system in producible HX configuration

GCMC HX Assembly

- Assembly of relatively simple CMC components
- In-situ growth of fiber interface coating (low cost)

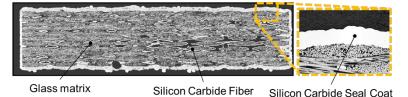
Counter Flow

Low CTE reduces stress


Cylindrical Counterflow HX

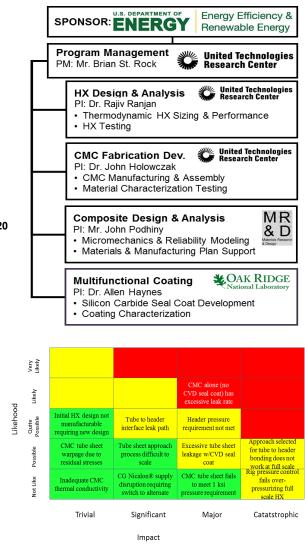
Parallel Flow

 Improved thermal performance & reduced stress

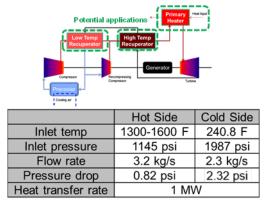

Hot-Pressed Tube Sheets

- Radial sheets reduce stress & enable core penetration
- Simplifies fabrication

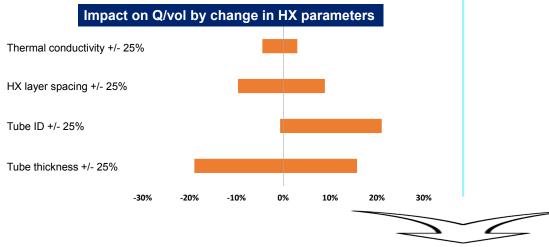
Silicon Carbide Seal Coating


- Improves air retention under pressure
- Chemically-inert surfaces

Technical Approach


- Leverage prior DoD materials investment
- Technical Focus Areas (driven by key risks):
 - Design for manufacturing
 - Focus on manufacturing maturity
 - Joint and coating development
- Phased Approach
 - Phase 1: Coupon-scale demonstration
 - Phase 2: Component integration & subscale demo

	1	0	Sept	ʻ18				Au	g '19			Aug
Table Danasis (fama			Ť	Year 1			Year 2			V		
Tas	sk Descriptions	Owner	F	Q1	Q2	Q	3	Q4	Q1	Q2	Q3	Q4
BP-	1: Coupon-Level Studies	•										
1	HX Design & Requirements											
	Design Specs & Requirements Allocation	UTRC										
2	CMC Manufacturing Studies											
	Application-Specific Property Database	UTRC										
	Processing Specifications for Joining	UTRC										
3	CVI Processing Studies											
	Reactor Facility Complete	ORNL										
	Coupon-Level Downselection	ORNL										
Go/	No-Go: Acceptable Material Limits	UTRC/DOE										
BP-	2: Subscale-Level Characterization											
4	HX Prototype Fabrication											
	HX Component Fabrication	UTRC										
5	CVD Processing & Characterization											
	Subscale Leak Testing Complete	UTRC										
	Single-Layer HX Prototype Complete	ORNL										
6	Single Layer HX Testing	t.										
	Single Layer HX Test Complete	UTRC										
7	Program Management											
	TRL/MRL Review	UTRC										
	Quarterly Reporting	UTRC										



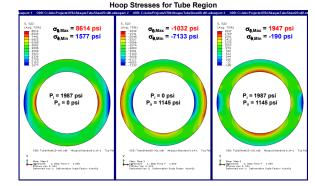
Task 1: HX Design & Requirements

Recuperated SCO2 Brayton cycle

HX parameter sensitivity study

HX core design

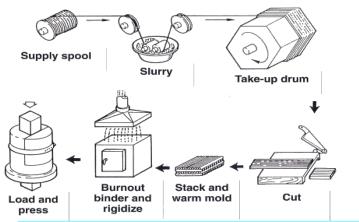
0.40"


13.1

4 9'

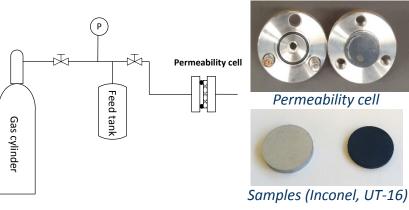
1MW HX sizing			
 Counterflow Core Design	Full scale HX core dimension (inch)		
Core Diameter	13.1"		
Core Length	14.9"		
Number of tubes	1410		

Volumetric HT rate = 34 kW/L

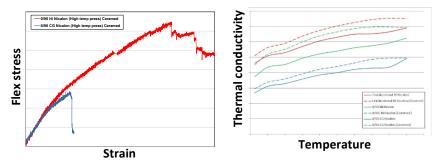

Preliminary FEA analysis

Guides the risk reduction path

Task 2: CMC Manufacturing Studies

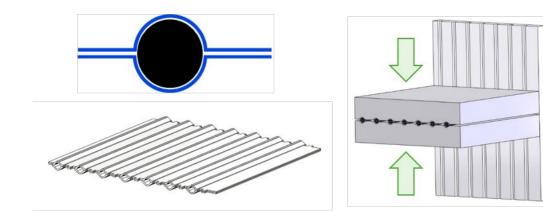

CMC fabrication process (hot pressing)

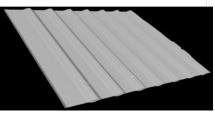
UT-16 CMC coupons



Permeability studies

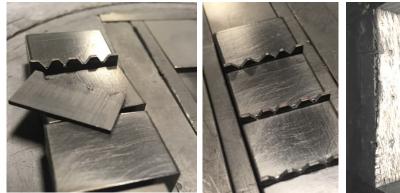
Initial tests show ultra-low permeability

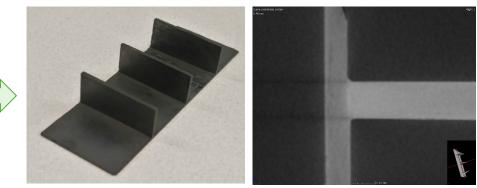

CMC mechanical properties


UT-16 characterization shows desired mechanical properties

Task 2: CMC Manufacturing Studies (contd.)

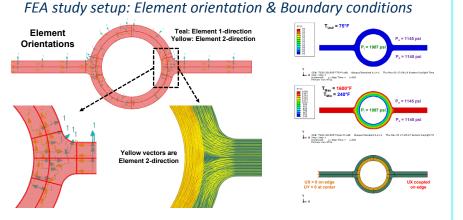
Tube sheet fabrication (tooling, fabrication trials)

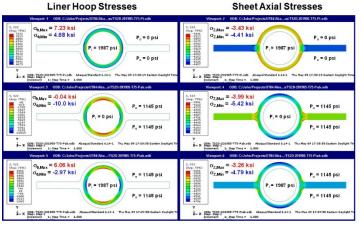




Sub-component joining trials

Tooling and process for T-joint trials

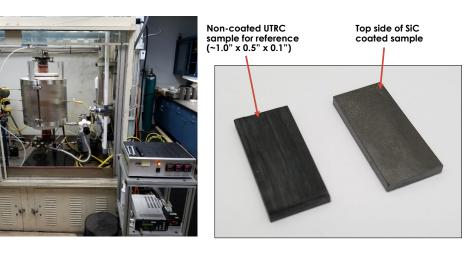

Optical and CT imagea of T-joint


Continued joining trials for sub-component integration

Micromechanical CMC Modeling & CVI coating

FEA stress analysis:

FEA results for hoop and axial stress



FEA study guiding the CMC fabrication strategy

SiC CVI coating:

Two reactors setup complete at Oak Ridge National Lab

- CVD reactor for smaller coupons
- CVI reactors for larger samples
- Coating trials underway

CVI reactor setup at ORNL

SiC coating of CMC coupons

CVI study underway to optimizing coating

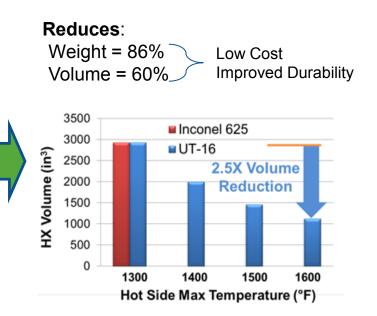
Summary

Major Accomplishments:

- Preliminary (full, sub-scale) HX design completed
- HX parametric study & optimization
- FEA analysis shows risk-reduction path
- Completion of DoE for coupon fabrication (reliability, reproducibility)
- Initial permeability study shows low leakage risk
- Tube sheet manufacturing & Joining study underway
- CVI coating demonstrated; DOE study underway

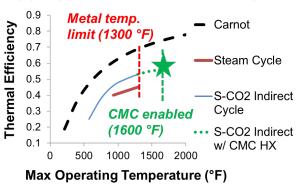
Key Next Steps:

- CVD coating tube sheets
- Tube-sheet to header joining
- Micro-mechanical CMC modeling

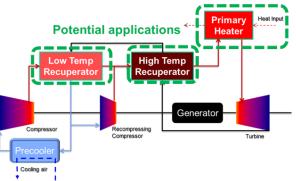


Thank You

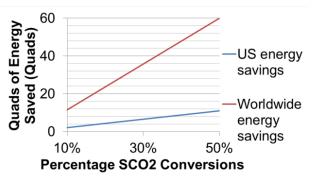
Project Objectives


Project/Technology Objectives

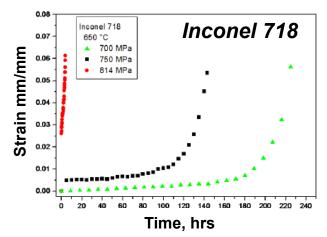
Metric	Go/No- Go Criteria	Program Success Criteria	Comments
Max Operating Temp	1500 °F	1600 °F	300°F higher than continuous use Inco
Hot-to-Cold Pressure Differential	900 psi	1000 psi	Industrial recuperator applications
Volumetric Heat Transfer	33 kW/L	26.7 kW/L	20% improvement over Inco baseline
Gravimetric Heat Transfer	19 kW/kg	13.6 kW/kg	20% improvement over Inco baseline
Cold-to-Hot Leakage Rate	0.5%	0.1%	Coldside flow loss has negligible effect
Cold-to-Ambient Leakage Rate	0.1%	0.0 g/s	No fluid leakage to environment
Thermal Cycling	N/A	20 cycles	Establish basic evidence of cyclic perf

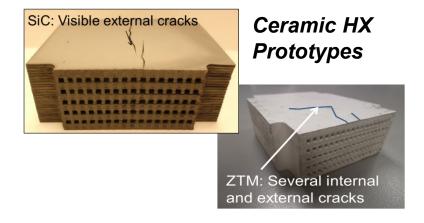


DOE Value Proposition


(a) Cycle Thermal Efficiency

(b) Recuperated SCO2 Brayton Cycle


(c) Projected Energy Savings



Technical Innovation

Current material options are costly and have limited strength and durability

Property	Inconel	Ceramics	CMC SOA
High temperature	<1200 F	<2000 F	1600-2500 F
Thermal expansion	~ 16 ppm/°C	2-10 ppm/°C	2-4 ppm/°C
Density	1X	0.4X	0.4X
Manufacturability	Excellent	Poor	Good
High pressure	< 2000 psi	< 1000 psi	< 2000 psi
Chemical Resistance	Moderate	High	Moderate
Thermal Cycling	Moderate	Good	Excellent
Air Retention	Excellent	Varies	Moderate
Strength	Low strength at high temp	Poor strength, brittle fracture	High strength at high temp.
Cost	Moderate	High	High

Transition (beyond DOE assistance)

Support transition by achieving cost targets

Raw Material	Mass per HX, kg	Cost per kg	Cost per HEX
CG Nicalon®	4.1	\$2,090	\$8,569
LAS Glass	7.9	\$165	\$1,304
Unit Assembly			\$9,873
CVD Sealcoat			\$5,000
		Total	\$24,745

"Objective" Target Current Estimate	\$25,000 (25 \$/kW)	Cost estimate (Table 2)
"Threshold" Limit Max Allowed	\$100,000 (100 \$/kW)	DOE STEP Program*

* "Technology Development of Modular, Low-Cost, High-Temperature Recuperators for Supercritical CO2 Power Cycles", DE-FE0026273 Kick-off Meeting, Nov 12, 2015

Technology Transition Council

Engage high temp materials suppliers and end-users in benefitting industries

Organization	Industry/Sector	Point-of-Contact
Coorstek-Vista	US CMC Manufacturer	Frank Anderson, R&D VP
3M/Ceradyne	US CMC Manufacturer	Ken Hanley, Director - Advanced Materials
Tetra Engineering	Power Generation	Dave Moelling, Chief Engineer
Climate, Controls & Security	Industrial Refrigeration	Craig Walker, Director CCS Programs
Pratt & Whitney	Commercial Aerospace	Paul D'Orlando, Director - Advanced Technology
UTC Aerospace Systems	Commercial Aerospace	Brent Staubach, Director – Advanced Cycles