Lifetime Energy Savings Via Advanced Manufacturing of Low Density Steels for Transportation Applications

DE-EE0008317

AK Steel Corp. / Oak Ridge National Laboratories /Colorado School of Mines BP1 (September 2018-December 2019)

> AK Steel Corporation Kelcey Garza

U.S. DOE Advanced Manufacturing Office Program Review Meeting Washington, D.C. June 11, 2019

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

<u>Project Title</u>: Lifetime Energy Savings Via Advanced Manufacturing of Low Density Steels for Transportation Applications

<u>Timeline:</u>

Project Start:	09/15/2018
Budget Period End:	12/14/2019
Project End :	09/14/2021

Barriers and Challenges:

- Processability
- Strength
- Ductility
- Undesirable phases
- Modeling validation

AMO MYPP Connection:

- Advanced Material Manufacturing
- Tools used to accelerate development:
 - Computational materials engineering
 - Enhanced modeling and simulation
 - High-throughput experimental processes

Project Budget and Costs (Including FFRDC):

Budget	DOE Share	Cost Share	Total	Cost Share %
Overall	\$1,231,300	\$314,188	\$1,545,488	20.3%
Approved (BP-1)	\$560,114	\$143,303	\$703,417	20.3%
Costs as of 4/1/19	\$163,317	\$39,049	\$202,366	19.3%

Project Team and Roles:

AK Steel Corporation

- Kelcey Garza, Sr. Research Engineer
- Amrinder Gill, Sr. Research Engineer
- Erik Pavlina, Section Manager
- Ed Case, Director

Colorado School of Mines

- Amy Clarke, Associate Professor
- Kester Clarke, Assistant Professor
- Tomás Scuseria, Graduate Student Oak Ridge National Laboratory
- Dean Pierce, Staff scientist

Project Objective

Problem

• Aluminum significantly reduces stiffness and sheet steel formability

Objective

 Design a formable, high strength, low density steel with a >10% reduction in density compared to typical advanced high strength sheet steels (AHSS)

Benefits

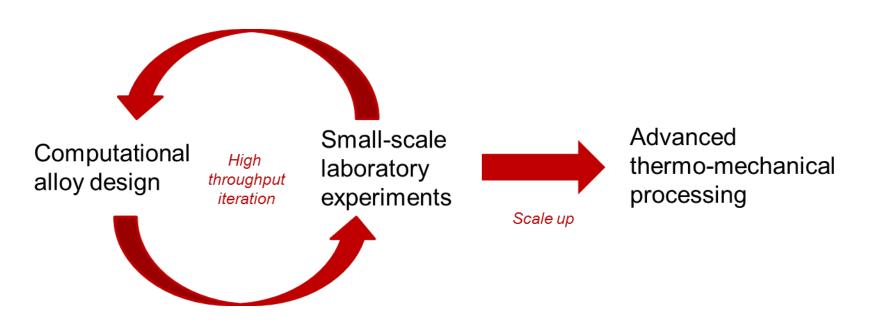
 Lifetime <u>energy savings</u> via processing efficiency, optimized aluminum <u>scrap usage</u>, and improved <u>fuel efficiency</u>

Challenges

- Embrittlement as a result of alloying
- Ductility at room temperature
- Crystallographic Texture

Approach

- <u>High throughput small laboratory heats</u> coupled with <u>computational alloy design</u>
- Utilize novel rolling and annealing strategies


Technical Innovation

- Lightweighting currently performed via down-gauging using zinc-coated AHSS
- Limitations to down-gauging:
 - Application becomes stiffness limited, not strength limited
 - Alloy content (namely, silicon) hinders zinc coating
- Innovative approach:
 - Low density steel would permit lightweighting with heavier gauges or cross-sections
 - Avoid geometric stiffness limitations
 - Potential for uncoated product

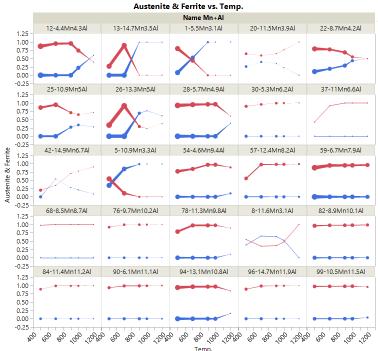
Technical Innovation

- Develop novel alloying and processing strategies toward the commercialization of steels with significantly lower density than existing steel grades
- Potential for lifetime energy savings
 - Steel melting using aluminum scrap
 - Processing efficiency
 - Improve yield
 - Eliminate coating requirement
 - Increasing fuel efficiency of automobiles

Technical Approach

- Study, understand, and mitigate fundamental mechanisms of the embrittling behavior of high-aluminum steels
- Leverage knowledge of large-scale industrial manufacture of highly-alloyed steels with advanced modelling and characterization capabilities of academic and national laboratories

Industrial/Academic Collaboration:


AK Steel: Melting, processing, and characterization of unique alloy compositions **CSM:** Microstructural characterization and heat treating optimization

ORNL: High-throughput CALPHAD, advanced processing

Technical Approach

Thermodynamic Modeling CALPHAD (CALculation of PHAse Diagrams)

- AI + Mn alloy strategy with Cr, Ni, Si, Nb, Ti, V
- High throughput simulation (1,000+ compositions)
- Create a database for rapid interrogation for combinations of composition, density, phase fractions, critical temperatures
- Identify potential phases which could be present over previously defined composition ranges
 - Define processing windows
 - Control precipitation reactions
 - Eliminate or avoid embrittling mechanisms
- Iterate with small-scale laboratory (<200 g) steel heats to rapidly screen and test compositions

Results and Accomplishments

- Completed high-throughput CALPHAD phase modeling for 1000 unique alloy compositions
- Melted, processed, and evaluated initial laboratory heats
- Initiated iterative alloy refinement process using the thermodynamic modelling and rapid small scale laboratory melting and processing

Transition

- Working with award partners to evaluate and characterize material properties
- Perform manufacture and usage analysis for the transportation sector
 - Market Assessment
 - Manufacturing Cost
 - Capital Investment
- Laboratory scale up to plant trials