Grid Application Development, Testbed and Analysis for MV SiC (GADTAMS)

NREL, Ohio State Univ., Florida State Univ. Center for Adv. Power Systems, General Atomics, Eaton, Southern California Edison March 1st, 2019 – February 28th, 2022

Barry Mather Ph.D. - NREL

U.S. DOE Advanced Manufacturing Office Program Review Meeting Washington, D.C. June 11th, 2019

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Project Title: Grid Application Development, Testbed, and Analysis for MV SiC (GADTAMS)

Timeline:

Project Start Date:	03/01/2019
Budget Period End Date:	02/28/2020
Project End Date:	02/28/2022

Barriers and Challenges:

- Development of a 1 MW MV AC to MV AC grid interconnector (MVB2BC)
- Development of a MW-level controllable grid testbed (including the development of high power, MV power hardware-in-the-loop (PHIL capability)
- Complete grid analysis to determine the value and use cases for the MVB2BC and other MV SiC enabled grid technologies

Project Budget and Costs:

Budget	DOE Share	Cost Share	Total	Cost Share %
Overall Budget	\$7,500,000	\$1,030,000	\$8,530,000	13.7%
Approved Budget (BP-1)	\$2,500,000	\$343,333	\$2,843,333	13.7%
Planned Costs for FY19	\$1,800,000	\$270,000	\$2,070,000	15%

Project Team and Roles:

- NREL leads overall project and leads grid analysis and testbed development
- OSU leads MVB2BC development (10 kV SiC)
- FSU-CAPS leads PHIL method development and builds ¹/₂ MVB2BC
- General Atomics, Eaton Lead advisors on MVB2BC development and testing
- SCE Advises on utility uses of MVB2BC

AMO MYPP Connection:

- Broad Goal: Transition DOE supported innovative technologies and practices into U.S. manufacturing capabilities.
- More Specifically:
 - Target 3.1: Reduce volume and weight of targeted power electronic systems by 50% with respect to their silicon based equivalent.
 - Target 3.2: Increase the efficiency of targeted power electronic systems by 2-3% (a reduction in losses of 28%) with respect to their silicon-based equivalents.
- Direct -> Develop a grid application largely enabled by MV SiC which improves grid resiliency while also potentially seeing large-scale, high-volume use.

Project Objective(s)

- Opportunity: The availability of MV SiC (10kV) enables new direct-connect (line frequency transformerless) grid converters along with the need for utility-grade equipment for grid resilience applications (ugrids, in-line processing protection, etc.)
- Objective 1: Develop a prototype 1MW MV AC to MV AC asynchronous grid connector
- Objective 2: Develop a comprehensive testbed for MV grid applications
- Objective 3: Determine the value of future MV SiC enabled grid applications

Technical Innovation

• Proposed Approach:

Technical Innovation

- Back-to-back MV AC conversion today entails 60 Hz transformers down to 480-600 V_{ac} then power electronic conversion (system is heavy and expensive)
 - Developing a MVB2BC prototype that will be 1/5 the size and 1/10 the weight with native conversion at MV-levels
- Standards for "grid connectors" are not well defined
 - Developing appropriate grid functionality for the developed prototype to guide future standards and standards testing requirements
- Grid operation on radial feeders is limited, particularly in regions with high-levels of DERs, resulting in hesitation to install more DER and limited flexibility
 - Completing comprehensive analysis of various use cases for the MVB2BC and other SiC enabled grid-connected power electronics to understand potential uses and values of the overall system
- MV power electronics are difficult to test presently
 - Developing IEEE 1547-like evaluation capability using either PHIL or simple lab testing procedures at a native MV level

Technical Approach

- Technical approach for MVB2BC prototype
 - OSU, FSU-CAPS and NREL develop initial design tradeoffs of various topologies/control methods
 - OSU leads 10 kV SiC development of $\frac{1}{2}$ the MVB2BC
 - FSU leads 2.7 kV SiC (due to cost and availability) of other ½ of MVB2BC
 - NREL leads grid connectivity-level control of MVB2BC

Technical Approach

- Technical approach for PHIL Testbed Development
 - FSU-CAPS and NREL develop initial required performance specifications for tests/functionalities
 - Initial prototype tests at FSU-CAPS
 - Final demonstration and test at NREL's ESIF

FSU-CAPS VVS and MMC Capabilities

-Bidirectional power flow

Technical Approach

- Technical approach for Grid Analysis
 - NREL leads the effort and is starting with quasi-static time-series analysis of distribution systems, protection analysis to follow

Where is the installation of a MVB2BC or SST most advantageous and for what application? What about multiples? Grid operating in emergency scenario? etc...

Results and Accomplishments

- The primary focus thus far has been placing the necessary subcontracts with OSU and FSU-CAPS as they are very significant contributors to the project
- Initial developmental work on the grid analysis portion has also begun
- Working on the procurement of 10kV devices from PowerAmerica's device bank and directly from Wolfspeed

Transition (beyond DOE assistance)

- Potential "1st mover" commercialization partners are part of the project and engaging the in project
- Utility partner, a progressive and likely early demonstrator of the developed technology, is also involved (also consulting on testing requirements for utility acceptance)