Fully Integrated High Speed Megawatt Class Motor and High Frequency Variable Speed Drive System DE-EE0007254

Clemson University and TECO Westinghouse Motor Company May 1st, 2016 to March 30th, 2020

J. Curtiss Fox, PhD – Clemson University

U.S. DOE Advanced Manufacturing Office Program Review Meeting Washington, D.C. June 11-12, 2019

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview Slide

Timeline

- Award issued: May 2016
- Scheduled end date: November 2018
- Projected end date: March 2020
- Project Progress: 85%

Budget

	FY 16 Costs	FY 17 Costs	FY 18 Costs	Total Planned Funding (FY 19-Project End Date)
DOE Funded	1.3M	1.6M	1.7 M	5.09M
Project Cost Share	0.4M	o.6M	o.8M	1.77M

Partners

TECO Westinghouse

Barriers

- Availability of wide bandgap semiconductors in industrial power electronics voltages and currents
- Demonstration of megawatt scale medium voltage high frequency drive systems and high speed induction motors
- Adoption of high speed motor and drive systems for industrial applications
- Costs versus efficiency for complete motor and drive systems

Project Objective(s)

- The primary objective of this project is to develop an integrated motor and drive system for medium voltage, megawatt scale, high speed applications
- Existing electrified high speed systems are not as efficient as they could be and are often comprised of equipment from several different OEMs
- A fully integrated system that utilizes a high speed, medium voltage induction motor and wide band-gap semiconductors integrated into a medium voltage, multi-level drive system is being developed
- The integrated system developed during this project will:
 - Increase overall system efficiency
 - Build upon decades of experience in design and fabrication of induction motors
 - Increase high tech US manufacturing capabilities

Fully Integrated System Specifications				
VSD Input Voltage	4.16 kV			
Targeted WBG devices	Full SiC MOSFET (1700 V)			
WBG device switching frequency	5 kHz – 10 kHz			
Apparent switching frequency	30 kHz – 60 kHz			
Motor fundamental frequency	500 Hz			
Motor shaft speed	15,000 rpm			
Motor output power	1 MW			
Motor output voltage	4,160 V			
Overall full load efficiency	> 93%			
Overall drive output THD _v (2 nd -50 th)	< 2% without a sine filter			
Overall half load efficiency	> 85 %			
Input power factor	> 0.99			

Technical Innovation

- High speed induction motor
 - Reliable squirrel cage induction motor topology
 - Simplified control: V/Hz and vector control
 - Thin steel laminations with low core loss at high frequency operations
 - Litz wire stator coils to reduce skin effect
 - High speed and high frequency operation produce considerable mechanical and electrical stresses on conventional materials

Electromagnetic simulations include drive PWM characteristics to simulate the impacts of dv/dt stress and harmonics

3D motor models used for design of the high speed induction machine

- Electromagnetic, thermal and fluid simulations with finite element analysis
 - Model refinement and validation with benchtop testing of components and materials
 - Utilization of Clemson HPC for 3D motor modeling

Technical Innovation

- High frequency variable speed drive
 - This project builds upon a series connected H-bridge topology that is expandable in both power and voltage levels
 - The multi-level topology presents lower dv/dt stress at medium voltage to simplify motor stator insulation considerations
 - High frequency capabilities of existing Si IGBTs to be significantly increased with SiC MOSFETs (1700V, 400A)
 - System design ready to accept larger current (600A) SiC MOSFETs for a direct 50% power increase
 - Filter-less design for operation with longer cable lengths and less insulation stress

Schematic of the 3 slice SCHB prototype system

3D model of the power cube converter (9 power cubes will be used in the prototype)

Technical Approach

- Materials testing, manufacturing process development and model validation are being used to reduce project risks
- Special manufacturing processes have been developed and verified
- Innovative Litz wire modeling techniques are being developed and validated to enable further research

All SiC Power Cube

1 MW 15,000 RPM TECO Motor

- Extensive test program contains elements for testing the motor, drive and complete system
- Full scale dynamometer testing to be performed at the Clemson University eGRID Center
- Test setup to be used as demonstration platform for potential customers

Technical Approach

- Parallel WBG sourcing approach
 - Hybrid prototype system
 - High frequency SiC output stage
 - Tuned third party SiC gate drive
 - Traditional Si active front end
 - Improved laminated bus work
 - Full SiC prototype slice
 - Both SiC output stages and active front ends
 - Lower cost second source of WBG semiconductors
 - Redesign of laminated DC bus and AC connections
- EMI resistant control hardware design
 - Packetized fiber optic control extended to daughter boards for each gate driver
- Improved internal transformer efficiency

A thermal heat run of a hybrid system converter

Corresponding input and output voltage and current for a 500 Hz 250 A heat run

Results and Accomplishments

- Results to date
 - Motor fabrication and assembly finalized
 - Successfully operated at 15,000 RPM no-load
 - FAT complete with smooth and grooved rotor
 - Packaging and shipment from Round Rock TX to Clemson University underway
 - Variable speed drive fabrication and assembly nearly complete
 - Awaiting final drive components from third party vendor
 - Preliminary drive operation and checkout complete
 - FAT will include operation of the motor at no load
 - Test Plan and Test Execution
 - Completed test plan scope for the prototype system and components
 - All major components have been received for the dynamometer and construction is 75% complete
 - System cost target (1\$/W) is easily realizable based upon prototype costs and 500 Units/Year
- Work to be Completed
 - Complete shipment of motor and drive to Clemson
 - June 2019
 - Commission the motor and drive on the dynamometer
 - July 2019
 - Complete the test plan at the Clemson University eGRID Center
 - August 2019 October 2019

Variable Frequency Drive System FAT setup

High Speed Motor Completed Manufacturing

Transition (beyond DOE assistance)

- In discussions with stakeholders and potential customers
 - Stakeholders include both end users and compressor OEMs
 - Additional high speed motor designs being developed from modeling techniques and materials characterizations
 - Larger range of applications than initially anticipated
- Certification of the system
 - Drive UL listing to build on existing UL certifications
 - Extensive test plan for components and the complete system developed around industry standards
- Development of manufacturing processes and methods
 - Efficient ways to create Litz wire motor stators
 - High strength braising processes for high speed rotors
 - Rotor surface treatments to reduce surface currents