Carbon-Free Iron for a Sustainable Future DE-EE0008309 Boston Metal Project Period: Budget Period 1

Rich Bradshaw - Boston Metal

U.S. DOE Advanced Manufacturing Office Program Review Meeting Washington, D.C. June 11-12, 2019

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

<u>Project Title</u>: Carbon-Free Iron for a Sustainable Future

Timeline:

Project Start Date:	08/01/2018
Budget Period End Date:	07/31/2019
Project End Date:	07/31/2021

Budget	DOE Share	Cost Share	Total	Cost Share %
Overall Budget	\$2,000,000	\$500,000	\$2,500,000	20.0%
Approved Budget (BP-1&2)	\$1,546,823	\$316,425	\$1,933,503	20.0%
Costs as of 3/31/19	\$209,549	\$52,387	\$261,936	20.0%

- Barriers and Challenges:
 De-couple carbon from primary steel production No direct carbon use
- Maintain commodity cost no premium required
- Match or exceed current industry efficiencies

AMO MYPP Connection:

Advanced Manufacturing R&D Projects ٠

Project Team and Roles:

Project Budget and Costs:

Lead Organization: Boston Metal •

Project Objectives

....Industrialize an innovative extractive metallurgy technology called Molten Oxide Electrolysis (MOE) to produce primary steel through the use of electricity instead of carbon....

AMO Alignment

"Improve the productivity and energy efficiency of U.S. manufacturing"

- MOE has the capacity to produce steel using less energy than traditional Blast and Basic Oxygen Furnace Technologies
- MOE offers rapidly scalable production capacity at a smaller tonnage requirements with competitive CAPEX input

"Leverage diverse domestic energy resources in U.S. manufacturing, while strengthening environmental stewardship"

• MOE decouples carbon use from the production of steel, dependent only on source of electricity

Challenges

- Inert Anode technology used in the electrolysis process needs to be scaled from laboratory to industrial size
- Achieving high production efficiencies to maintain commodity prices and speed adoption

Steel production is the largest industrial source of CO₂

Lower cost and lower volatility

Technical Approach

- Budget Period 1
 - Develop knowledge of operational window for inert anode material
 - Extensive use of laboratory (small scale) testing
 - Derive design requirements necessary for scaling activity
 - Test knowledgebase through preliminary scaling tests
- Budget Period 2
 - Semi-industrial scaling and testing of inert anode
 - Extensive multi-physics modeling, design for manufacturing
 - Multiple design & test rounds
- Budget Period 3
 - Long duration testing at semi-industrial scale
 - Final design/optimization
 - Base-line performance of MOE iron/steel production

Results and Accomplishments

<u>Milestones: Go / No-Go</u>

- Budget Period 1 Lab Scale Accomplished!
 - Oxygen production confirmed
 - Iron production confirmed
 - <5% Mass loss of anode after 2 hrs of testing
- Budget Period 2 Semi-Industrial Scale
 - Oxygen production confirmed
 - 10 kg of Iron production from oxide input
- Budget Period 3 Endurance Testing
 - Oxygen production demonstrated
 - >100 kg of iron produced in single week long campaign
 - <5% Mass loss of anode after week long campaign

Transition (beyond DOE assistance)

Boston Metal Strategic vision

- Ferro-Alloys
 - Short term revenue from ferro-alloys (3-4 years)
- Steel
 - Near term technology de-risking from DOE
 - Ferro-Alloys revenue supports medium/long term development activities of steel & inert anode
 - 100,000 tpa Demonstration MOE steel plant in 7-10 years
- Potential commercialization partners
 - Existing Steel producers
 - Plant producers (EPC/equipment sellers)