Boride-carbon hybrid technology to produce ultra-wear and corrosion resistant surfaces for applications in harsh conditions

EE0008320
Michigan State University, Argonne National Laboratory & Fraunhofer USA, Inc.
05/16/2018 – 11/15/2019

Thomas Schuelke, Michigan State University
Nina Baule, Fraunhofer USA, Inc.

U.S. DOE Advanced Manufacturing Office Program Review Meeting
Washington, D.C.
June 11-12, 2019

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Overview

Timeline
• Project start date: 05/16/2018
• Project end date: 11/15/2019

Barriers
• Develop a **commercially feasible** treatment for making extremely durable low-friction wear and corrosion resistant surfaces.

AMO MYPP
• Materials for Harsh Service Conditions

<table>
<thead>
<tr>
<th>Budget</th>
<th>DOE Share</th>
<th>Cost Share</th>
<th>Total</th>
<th>Cost Share %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Budget</td>
<td>$550,000</td>
<td>$200,000</td>
<td>$750,000</td>
<td>26.7%</td>
</tr>
<tr>
<td>Costs as of 3/31/19</td>
<td>$219,444</td>
<td>$154,977</td>
<td>$374,420</td>
<td>41.4%</td>
</tr>
</tbody>
</table>

Partners
• Michigan State University (project management, coating technology)
• Argonne National Laboratory (boriding technology)
• Fraunhofer USA Inc. (coating technology)
• Industry partners (application specification and testing)

(Boride-carbon hybrid technology to produce ultra-wear and corrosion resistant surfaces for applications in harsh conditions)
Project Objectives

• **Mechanical assemblies** (engines, transmissions, complex tools) experience ever **harsher operating conditions** (extreme contact loads, corrosive environments), while **durability** has to increase and **costs** have to decrease. Therefore this project aims:

 • To develop a hybrid process for creating **extremely durable low friction, wear and corrosion protective engineered surfaces** for tribological components in harsh conditions.

 • To **demonstrate the performance** of such surfaces on the laboratory scale.

 • To **demonstrate a commercialization path** via industry engagement and cost-benefit analysis to enable deployment across **transportation, renewable power and manufacturing** industries to reduce energy consumption and increase service life.

(Boride-carbon hybrid technology to produce ultra-wear and corrosion resistant surfaces for applications in harsh conditions)
Technical Innovation – State-of-the-Art

• Today’s Surface Engineering:
 - Hard carbon coatings
 - Fast boriding

• Issues:
 - Insufficient mechanical substrate support for the hard coating
 - Insufficient hardness of borided layers for extreme applications
 - Corrosive attack of substrate through pinholes in thin coating

(Boride-carbon hybrid technology to produce ultra-wear and corrosion resistant surfaces for applications in harsh conditions)
Technical Innovation – New Approach

- **Hybrid Treatment**: Fast Boriding + Hard Carbon Coatings

- **Advantages**:
 - Tailored *mechanical substrate* support for the hard coating by thicker boride support layer
 - *Corrosion protection* by thicker boride support layer
 - *Economical* due to ultra fast electrochemical boriding process

(Boride-carbon hybrid technology to produce ultra-wear and corrosion resistant surfaces for applications in harsh conditions)
Technical Approach – Unique Attributes

- Unique collaboration to bridge the innovation gap:
 - University,
 - National Laboratory,
 - Fraunhofer,
 - Industry.
- Risk reduction through existing
 - Translational experience,
 - Equipment, infrastructure,
 - Precompetitive and cross-industrial approach.

(Boride-carbon hybrid technology to produce ultra-wear and corrosion resistant surfaces for applications in harsh conditions)
Technical Approach – Team Roles

(Boride-carbon hybrid technology to produce ultra-wear and corrosion resistant surfaces for applications in harsh conditions)
Results and Accomplishments

Milestones
• Diamond and ta-C coatings with good adhesion on borided parts made from industry relevant steels

Accomplishments
• Duplex layers have better wear and corrosion resistance than single layers
• In contact with end-users

Future Work
• Fatigue Performance
• End-user specifications
• Cost-benefit model

(Boride-carbon hybrid technology to produce ultra-wear and corrosion resistant surfaces for applications in harsh conditions)
Transition

EERE Project Additional Application Development Transfer & Implementation with Service Providers

Who cares?
- Oil & gas,
- Mining,
- Rail vehicles,
- Heavy duty trucks,
- Cement and mineral processing,
- Hydro, wind and tidal energy,
- Automotive,
- …

- Component manufacturers will work with service providers to treat parts adding value for the end user.
- If benefits outweigh costs for all, the technology will succeed as previous surface engineering technologies have demonstrated (e.g. coated cutting tools).

(Boride-carbon hybrid technology to produce ultra-wear and corrosion resistant surfaces for applications in harsh conditions)