1467-1561 Amorphous and Nanocomposite Magnets for High Efficiency, High Speed Motor Designs DE-EE0007867

Carnegie Mellon University/NETL/North Carolina State University 03/01/2017-03/31/2020

Michael E. McHenry & Carnegie Mellon University (PI & Presenter)

U.S. DOE Advanced Manufacturing Office Program Review Meeting Washington, D.C. June 11-12, 2019

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Project Title: Amorphous and Nanocomposite Magnets for High Efficiency, High Speed Motor Designs

Timeline:

Project Start Date:	04/01/2017
Budget Period End Date:	06/30/2019
	(with NCE)
Project End Date:	03/31/2020

Barriers and Challenges:

Develop RE-free motors to address:

(a) metal alloy processing & core production;

- (b) soft magnet & core post- processing;
- (c) demo an efficient 2.5 kW motor.

(d) Transfer MANC casting technology to domestic production of high power density motor materials.

AMO MYPP Connection:

 AMO MYPP Mission: Transition DOE supported innovative technologies and practices into U.S. manufacturing capabilities.

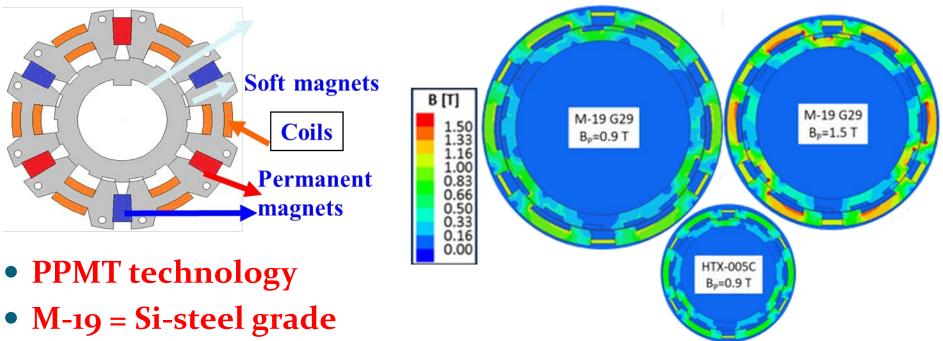
Project Budget and Costs:

Budget	DOE Share	Cost Share	Total	Cost Share %
Overall Budget	\$2,399,591	\$774,471	\$3,174,062	24.4%
Approved Budget (BP-1&2)	\$778,016	\$251,106	\$1,029,122	24.4%
Costs as of 3/31/19	\$284,688	\$91,883	\$376,571	24.4%

Project Team and Roles:

CMU (Alloys Development, Motor Design)

Team members and their role:


NETL (Ribbon and core post-processing) NCSU (Motor controls & testing). Fort Wayne Metals (Transition of Casting) Carpenter (Evaluation of Stamping)

Project Objectives

- CMU team will develop metal amorphous nanocomposites (MANCs) for a rare earth (RE)-free, 2.5 kW motor with 4% efficiency increase portioned between a) controller; b) Cu-; c) Fe-; & d) windage-losses. We address supply chain steps:
 - (a) metal to alloy processing & magnet core production;
 - (b) soft magnetic laminate & core post- processing; and
 - (c) demo a 2.5 kW motor showcasing superior efficiency of MANCs.
 - (d) Transfer MANC casting technology to domestic producers.
- Si-steels do not have resistivity and thickness required for low losses at magnetic switching frequencies > 1 kHz.
- New technology requires new topologies, processes & properties to leverage MANCs in motors.

Technical Innovation – MANC SMMs

- Current practice uses Si-steels that are limited by losses to f < 1 kHz. MANC technology adoption is hindered by: (a) limited US manufacturing; (b) materials limits for high f switching and (c) mechanical property constraints for certain motor applications;
- **Prior simulation:** P = Torque x speed. **Outrunner motor**

• HTX-005 = MANC yields 70% size reduction

Technical Metrics Enabling Applications: Power Losses.

Hysteresis Losses

$$P_{tot} = P_h + P_e + P_a$$
Random crystal anisotropy
(MANC H_c < 40 A/m)

$$P_e = bf^2B^2$$

$$b = \frac{(\pi \cdot t)^2}{6 \cdot \rho}$$
Resistivity, Thickness
 $\rho > 100 \ \mu\Omega$ -cm
t < 25 \mum
H

$$P_a = e(f \cdot B)^{1.5}$$

W1.0/1kHz < 10 W/kg

DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING

Technical Approach

- Technical Approach:
 - Identify prototype FEA motor design for MANCs (CMU/NETL);
 - Solidification (RSP) & post-processing to tune permeability (CMU);
 - Post processing into rotor/stator components (CMU, NETL);
 - Winding techniques for use in new topologies (NETL),
 - Incorporate state of the art motor controllers (NCSU).
 - Measure loss partitioning between controller, Cu, Fe, & windage in 2.5 kW motor (CMU, NCSU).

Project Risks:

- Cutting/shaping technologies, Mechanical Properties.
- **Unique Advantages:**
- (a) Commercial scale casting (b) US located companies, (c) ribbon processing (d) permeability tuning, (e) patented alloys.

Technical Approach

Novel Axial Motor Design: Flux Switching with Permanent Magnet (FSWPM) Motor

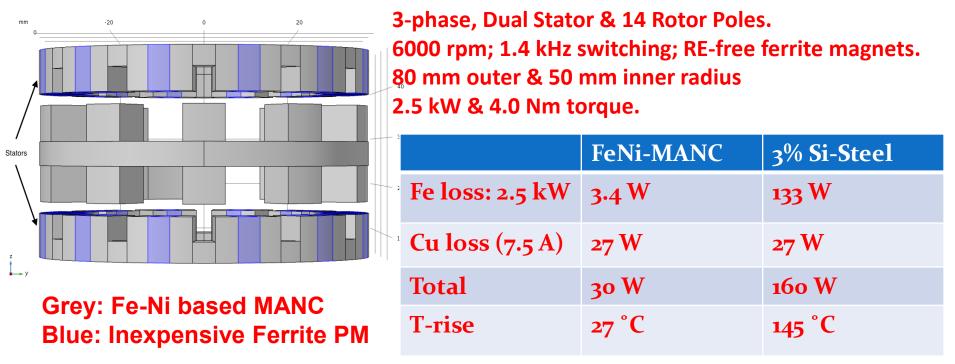
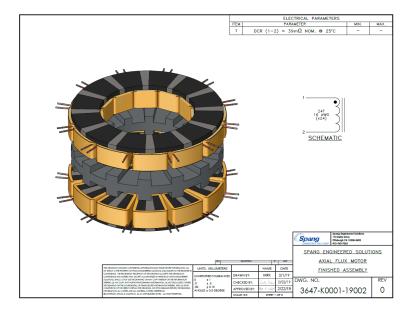
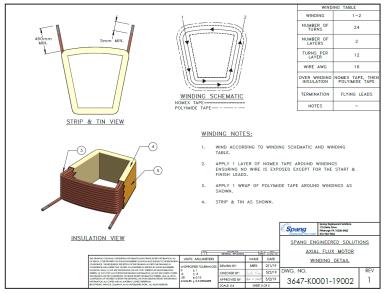
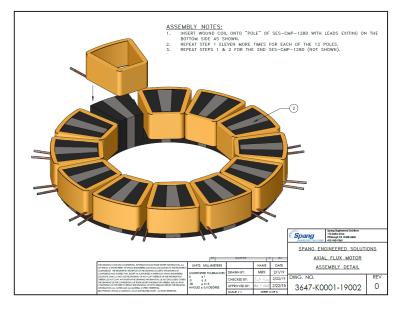


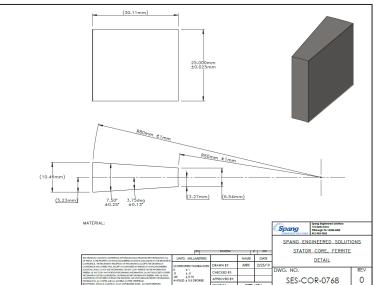
Table I: Coercivity, saturation induction, thickness, losses at 1 T and 400 Hz, and losses at 1 T and 1 kHz for nanocrystalline (Fe70Ni30)80Nb4Si2B15, nanocrystalline Fe85B13Ni2, Fe-based Metglas 2605SA1, and non-oriented 3% Si-steel and 6.5% Si-steel. *Hc measured at 60 Hz and 1 T induction.

	H _c (A/m)	B _s (T)	t (µm)	W _{1.0/400} (W/kg)	W _{1.0/1k} (W/kg)
nc-(Fe ₇₀ Ni ₃₀) ₈₀ Nb ₄ Si ₂ B ₁₅	7.0*	1.3	20	0.9	2.3
nc-Fe ₈₅ B ₁₃ Ni ₂ ³⁸	4.6	1.9	13.4	2.3	6.3
nc-Fe ₈₉ Hf ₇ B4 ³⁹	5.6	1.59	17	0.61	1.7
Fe-based amorphous ³⁸	2.4	1.56	23.9	1.6	4.7
3% Si-Steel ^{39,40}	55	2.05	100	8.5	27.1
6.5% Si-Steel ⁴⁰	18.5	1.85	100	5.7	17.2

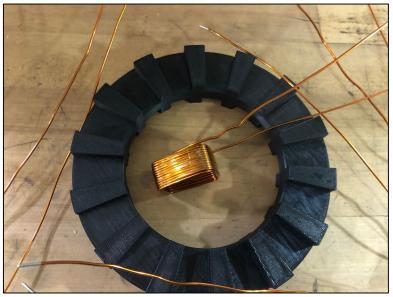

Patented CMU FeNi-based MANC


10x lower losses


Results and Accomplishments 2018/19


- Modified FEA topology for gearless motors suitable for 1 kHz operation enabling 4% efficiency increase compared 0.35 mm non-oriented 3% NGO Si-steel, to reach 96% overall efficiency to accommodate dual stators.
- Produced Alloy at Pilot Lab Scale in Amounts >2 kg, sufficient for a 2.5 kW motor build. Confirmed the total core weight (stator + rotor) is < 2 kg.
- Core loss < 11 W/kg at 1kHz/1T after waterjet processing MANC Core (70 C).
- Assessed Glass Forming Ability for ring stamping of MANCs.
- Developed winding procedures for axial motor topology. Validated slot fill factor of at least 50% with Cu windings.
- Controller design is complete & awaits finished motor for BP3 testing in BP3.
- We have evaluated MANC microstructures by HRTEM.
- Stator permanent magnet cutting contracted. MANC rotor and stator waterjet cutting contracted.
- We anticipate motor machinability demonstrated ~June 30, 2019.

Assembly and Component Drawings

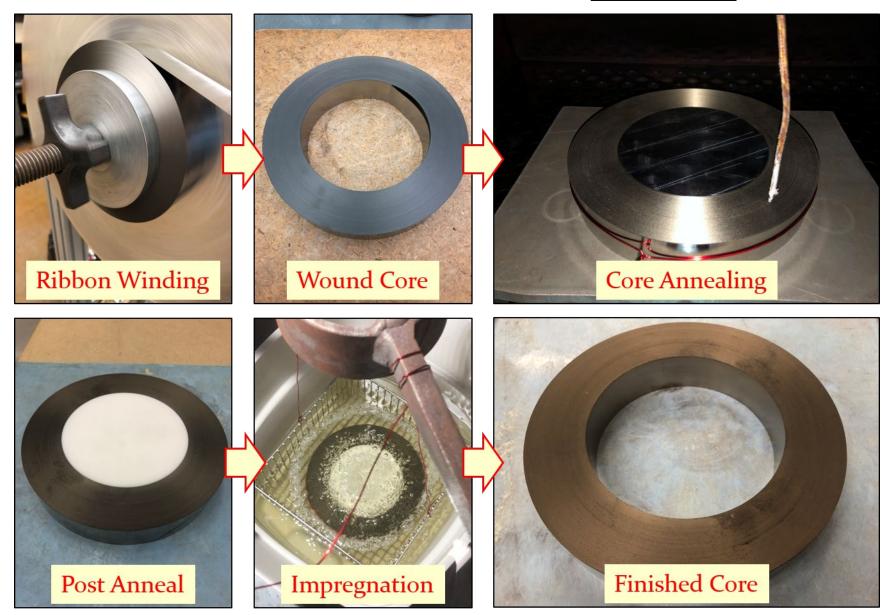


3D Printed Mock-Up: >50% Wire Fill Factor

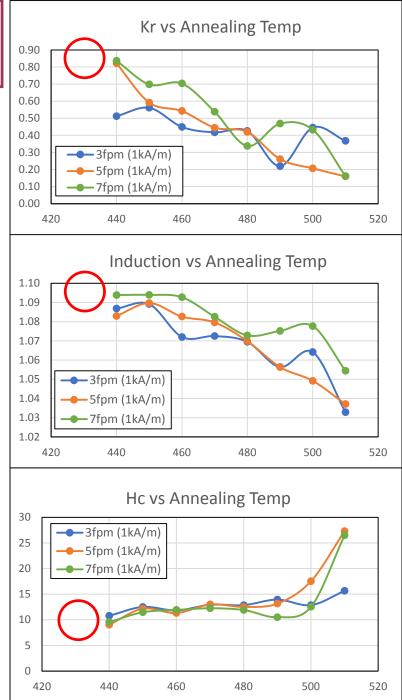
Wound Stator

Rotor

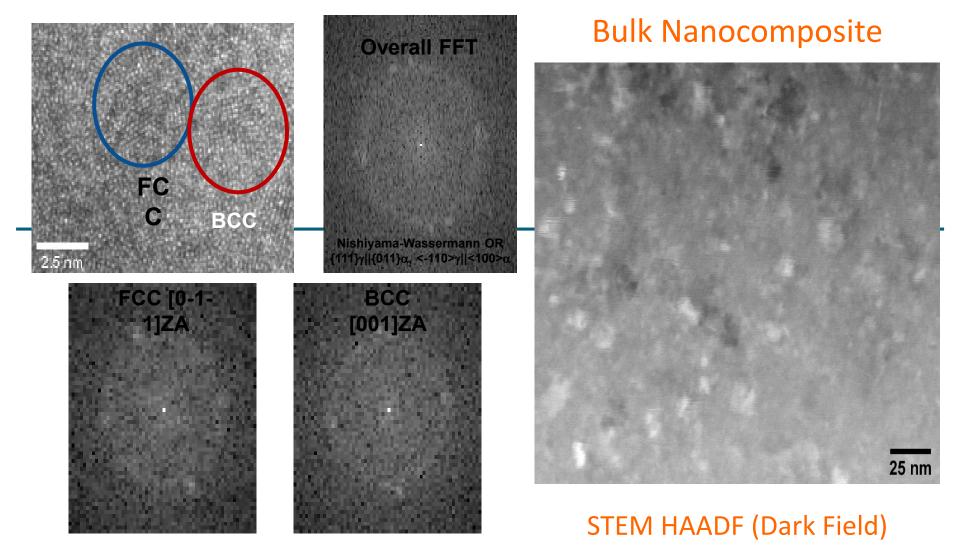
Bare Coil



Core Fabrication for Water Jet Cutting



In-Line Annealing Trials: Fe-Ni Alloy at Scale


- 8 T's from 440°C to 510°C.
- 3 Materials speeds 3-7 ft/min.
- 440°C at 7 ft/min chosen for tension annealing 25 250MPa.

HRTEM in MANC Interior

Evidence of N-W, K-S, and Cube on Cube Orientation Relationships Between BCC and FCC Nanocrystals

Transition and Deployment

- Project demonstrates high speed motor efficiencies opening new markets for MANC ribbons.
- New MANC commercial production capabilities identified: Fort Wayne Metals has performed their 1st cast. Carpenter built a lab caster, id'd stamping equipment. Metglas has a license to test.
- Commercialization approach:
 - Technology transfer of casting technology to FWM
 - Investigate MANC stamping with Carpenter (BP3)
 - 2.5 kg Motor Demo in BP3
 - Concept paper for scaling to 20 kW motors submitted to VTO
 - Conversations with small appliance manufacturer initiated.