

PEM BASED VACUUM DESALINATION SYSTEM DE-SC0015923 Xergy Inc.

July 31, 2017 – July 30, 2019

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Project Title: PEM BASED VACUUM DESALINATION SYSTEM

Timeline:

Project Start Date:	07/01/2017
Budget Period End Date:	07/31/2019
Project End Date:	07/31/2019

Project Budget and Costs:

Budget	DOE Share	Cost Share	Total	Cost Share %
Overall Budget	\$936591.68	\$0	\$936591.68	0%
Approved Budget (BP-1&2)	\$936591.68	\$0	\$936591.68	0%
Costs as of 5/15/19	\$928163.95	\$0	\$928163.95	0%

Objective:

To develop a solar powered, independent sea water desalination system for installation at a US Navy remote island, capable of producing 50 gallons per day of potable water.

Project Team and Roles:Mark Stutman.

- VP Operations Xergy, Inc
- Harish Opadrishta Product Manager, Pervaporation Xergy, Inc
- Abhishek Bandlore Engineer, Pervaporation Xergy, Inc

AMO MYPP Connection: Dr. Bob Gemmer

Barriers and Challenges:

Proof of Operations

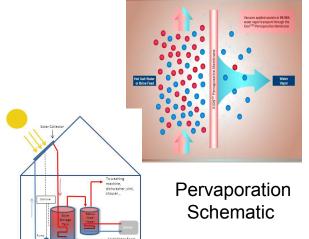
Durability Tests

Capital & Operating Costs

Project Objective(s)

• To develop: "The most energy efficient, modular and scalable solar-powered membrane desalination system based on Ionic Membranes, that can effectively desalinate the <u>widest</u> range of seawater and waste streams to WHO accepted salinity levels"

Contactor


Key Challenges:

- Development of advanced membrane modules
- Operation & Durability of the membrane desalination unit

Technical Innovation

- Using "Pervaporation" i.e. <u>dense (non-porous)</u> Ionic Membranes, and <u>low-grade heat</u> to desalinate salt water.
 - Pervaporation: Permeation + Evaporation
 - Driving force Chemical Potential
 - Lowest Fugacity for water transmission due to its hydrophilicity
- Solar Thermal system provides low-grade heat
 - Pervaporation system requires <u>55 to 70 C</u>operation

- Process Input parameters: salt-water concentration, temperature, & vacuum
 - Achieved <u>5 x flux rates</u> of current state of art ionic membrane systems
 - Demonstrated capacity to efficiently handle Salt Streams <u>> 3.5 to 10 %</u> Salinity (well beyond RO Systems)
- Critical Process Output parameter: water purity
 - Obtained <u>99.9% removal of salts from 3.5% salt water</u>. The TDS of the permeate obtained is 35 ppm which is an <u>order of magnitude better</u> than tap water.

Technical Approach

Key Scientific/technological aspects:

- Membrane module using <u>novel ionic tubes</u>
 - A Key Innovation is the use of these membranes in tubular form enables the construction of the lowest cost, highest performance, leak proof modules.
- <u>Latent heat recovery unit</u> used to simultaneously heat incoming feed water and condense product steam
- Integrate Electrochemical Ozone disinfection unit

Project risks / Go-No Go Points:

- ✓ Confirm system efficiency with latent heat recovery system
- ✓ Establish production method to produce ionic tubes
- ✓ <u>Develop leak-proof, functional membrane module</u>
- Operate unit to confirm system durability in process

Additional Participant roles:

 Identified New Applications: <u>Bechtel</u> (Oil & Gas Production Water Purification), <u>Norchem</u> (Industrial Laundry and Waste Streams), <u>Skeiron</u> High Salinity (Brackish water) desalination

Results and Accomplishments

- Heat recovery module has been developed
 - Operating efficiency of <u>83.32%</u> demonstrated
- ✓ Three generations of ionic tubes developed.
 - The current generation of ionic tubes are <u>leak</u> proof, hold up to 85 psi pressure, and supported by monofilament braids.
 - Tube Sizes range from 0.05 0.5 inches
- Five generations of modules have been developed.
 Results obtained from the Gen 5 module below:

Feed Water Salinity(%)	Feed Water Temperature (C)	Feed Water Flow Rate (gpm)	Permeate Flux Rates (gfd)	Permeate Salinity (ppm)
3.5	70	1	3.05	37
3.5	80	1	3.377	39
3.5	80	2	3.648	32
3.5	70	2	3.127	33
3.5	70	1.5	3.122	38

- Transition
 Exhibited Operating Unit at AWWA/AMTA meeting 2019
- Filed 1 Issued Patent, 4 patents in process
- <u>Procured New Test Bed at Brackish Groundwater facility</u>, DOI, Alamogordo, NM
- Obtained laundry waste streams from Norchem for Tests
 - <u>Successful qualification of Norchem laundry waste effluent</u>
 (TDS = 1500 2000 PPM). Permeate water obtained had a TDS of 35 ppm.
- Entered into agreements with Bechtel and Skeiron
- <u>Ozone disinfection product launched</u> as an independent product
 - Joint Development program for use in appliances
 (For Dish Washers, and Washing Machines)
 - Strategic Appliance Company Partners: Haier, Sub-Zero

Haier

