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Project Overview

» Project start — Q3 FY2014 Directly targets barriers identified in VIO MYPP
* Project end - Q4 FY2019 - “Changing intfernal combustion engine
« Ongoing combustion regimes”

« “Long lead times for materials
commercialization”

+ “Many advanced vehicle technologies
rely on materials with limited domestic
supplies”

- “Need to reduce the weight in advanced
technology vehicles”

Budget Pariners
. FY2017 — $235 K - Convergent Science, Inc.
.« FY2018 — $230 K - Two engine OEMs

« FY2019 - $210K

%OAK RIDGE

National Laboratory

NATIONAL
TRANSPORTATION
RESEARCH CENTER




Power-density trends in HD engines present challenges
for materials with higher temperatures and pressures

« Trend: Roadmap for heavy-duty (HD) engine operation projects
increasing specific output, with higher peak cylinder pressures
(PCP) and temperatures into the foreseeable future

« SuperTruck | programs showed >50% BTE with =225 bar PCP, for short
timespans

« Challenge: Materials properties degrade with temperature

% Concerns: Strength, creep, fatigue, oxidation/corrosion, cost
Range of liner, head,
piston crown, valves
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Many cast irons have similar tensile properties at
elevated temperatures, but creep and fatigue life are

also important

Federal Test Procedure Heavy-Duty cycle
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Normalized Engine Speed

Additional materials properties, including fatigue life, determine svitability for

more intensive engine applications.
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Gas-materials intferface is important in engine modeling,
analysis, and operation

« Cylinder walls contain combustion gases, provide heat-tfransfer interface
» Extreme environment has impact on materials (e.g., corrosion, stresses)

« Spatially varying heat flux is important in evaluating materials stresses

 Traditional combustion modeling uses specified boundary conditions

« Advances in simulation now support temperature predictions and more
accurate heat-flux co-solution of gases and structural solids [this project]

Cylinder boundaries Stress map in engine head

PISTON

Q : heat transfer Injector removed (lower resultant stresses)
T : temperature EV: Exhaust valve

OAK RIDGE |¥aTioxaL P : pressure IV: Intake Valve
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This project integrates experiment and modeling

DESIGN

' Increase in specific
I power - higher
. cylinder pressures

EXPERIMENT

Compacted Graphite Iron
* Thermo-mechanical properties
* Fatigue, creep
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The project approach has evolved based on growth in
understanding of key needs and gaps, localized refinement of
models, and software advancements

FY2014 FY2015 FY2016
Combustion modeling
CFD model, Tuning & CHT to
fixed- parametric calculate
temperature studies, F-TBCs temperature
boundary
conditions;
PCP target
Materials characterization
Materials from  Thermo-
OEM physical
properties at
elevated

Structural modeling

Baseline FEA,
partial
refinement
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FY2017

Refinement
and testing of
CHT, with PCP
target

Short-term &
Isothermal,
constant-load
creep

FY2018

Low-order
model

Switch to
power-density
target

Isothermall,
constant-load
creep

High-T fatigue

Refinement of
FE model for
targeted
results

FY2019

Low-order
model with 3D
CHT

CFD finalized

Evaluating
materials and
operating
effects

Strain-based
fatigue model

APPROACH



Objectives and Approach

Objectives

e |dentify strength and fatigue performance of current HD engine materials
operating at increased power densities (with higher temperatures and
pressures).

* Develop methodology for defining materials properties required for lifetime
of commercial HD engine operation at future extreme operating
conditions.

Approach

* Use combustion Computational Fluid Dynamics (CFD) modeling to
estimate temperatures and heat fluxes at current and future specific-
output operating points.

» Experimentally measure relevant mechanical properties of Compacted
Graphite Iron (CGI-450).

* Use Finite Element Modeling to evaluate effects of pressure and thermal
environment on HD engine cylinder components of interest:
head, valves, liner, piston.

* Focus on predicted requirements for fatigue and creep on alternative (CGI-450 -
HD cylinder heads) and future engine materials
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Modeling focuses on a late-model production engine

2013 15-L 6-cylinder engine; focus on single interior cylinder, up to centerlines
of neighboring cylinders; based on CAD data from OEM

Low-order combustion modeling High-order modeling

e Low-dimensional freatment — less e More accurate, but much more
accurate, but fast — accelerates computationally intensive & slow
Progress e Industry-standard packages such

e Used to complement / inform CFD CONVERGE (CFD) for combustion,
simulations ANSYS (FEA) for structural analysis

* Help define boundary conditions ¢ FE model refined from OEM-
« Verify/scope trends - effort in Fy18 ~ supplied FE model fo focus on

. f
e GT-Power - industry-standard arecs © concem
simulation suite

Ttk

Design data from OEM and
measurements; materials
properties from ORNL (CGl-
450 cast iron)

Both models use solved,
rather than imposed,
wall temperatures
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FE was model refined to focus on stressed areas in head

Layers of regular
hex elements
extended into
head close to

cooling channels

Refinement gives:
» Betfter accuracy

» Regular temperature
vs depth gradients
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Regular elements placed in
bridges between valves

4,000 (n)

3.000
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Summary of activities

* Materials: Experimentally measure relevant properties for Compacted
Graphite Iron (CGI-450) at higher temperature range (up to 650-800 °C)

— OEM-relevant and supplied material
— Expanded temperature ranges over publicly available data (limited to ~300 °C)
— Liftle creep/fatigue data publicly available at high engine temperatures

« Progress:
— Tensile strength, thermal diffusivity, coefficient of thermal expansion, critical

temperatures, specific heats
— Short-term creep
— Isothermal, constant-load creep
— High-temperature fatigue

« Combustion: Evaluated model for three PCP ranges based on specific-
power increase trajectories: 190 (baseline), 225-250 bar & >250 bar, using
two materials (Gray Cast Iron & CGI-450).

« Key findings:
— Temperatures ~20-30 °C higher for CGI than Gray Cast Iron (thermal
conductivity)
— Temperatures ~25-50 °C higher at mid-range specific-power increase
(~225-240 bar)
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FE model load was applied in a series of steps

FEA model examined four load scenarios, allowing decomposition of
load effects on resulting stresses and strains.

Steplload | Scenario

1 Preload Cold engine, engine off (head
bolts cause preload)

2 Preload + Pressure Cold engine, combustion pressure

3 Preload + Temperature Hot engine, no combustion
pressure

4 Preload + Pressure + Temperature Hot engine, full combustion effects

QAK RIDGE | 51 | APPROACH
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FEA predicts temperature has a greater impact on
stresses than pressure

Preload + Cylinder Pressure Load Preload + Combustion

Stresses are in [psi] Temperature Rise

Conditions: CGI, 190 bar operation, elastic-only model

EV: Exhaust valve
IV: Intake Valve
Fl: Fuel Injector
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Baseline FEA scenarios suggest stresses greater than yield

Temperature [°C] Stress [psi]

400.94 Max
362.12
3233
284.49
245.68
206.86
168.05
o 12923
90418
51.603 Min

e . : : EV: Exhaust valve
Conditions: CGI, 190 bar operation, elastic-only model V- Intake Valve

Fl: Fuel Injector

Plasticity must be accounted for in model (achieved
this FY using ORNL experimental data).
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FEA predicts lower stresses in the presence of plasticity

<
Note: color
mMmaps on
different scales
[
\‘“‘-ws
Stresses, elastic-only model Stresses, model with plasticity
Stresses are in [psi]
Conditions: CGI, 190 bar operation
EV: Exhaust valve o o .
IV: Intake Valve Plasticity must be accounted for in model
FI: Fuel Injector when evaluating engine-component lifespan.

NATIONAL
%gf})ﬁ%{gaﬁg TRANSPORTATION. TECHNICAL ACCOMPLISHMENT [ERSISN(e5Y,




Temperature increases with combustion intensity

. High—flux scenario 25% Baseline (190 bar) High flux, same cooling (LC1)

more heat flux from
combustion
(~225 bar PCP range)

« Cooling heat-transfer
coefficient adjusted to
explore effects on
materials temperatures
(no material changes)

Key findings:

— Temperatures greatly
increase with heat flux

— Cooling alone cannot
counteract heat-flux Max

effects 380
340

39.

4
i
300 )

260
220

— Similar trends seen with
Gray Cast Iron, but

~25°C cooler 180 °C  EV: Exhaust valve CGIl. model
140 IV: Intake Valve . .o
100 Fl: Fuel Injector with plOShClTy
52
NATIOMAL
Y OAK RIDGE | oy mat0s7




Engines will be distressed with higher specific output

« Extreme temperatures and stresses
extend 1-2 mm (10-15%) into the fire
deck

Temperatures in exhaust valve bridge

g 390 =
. . o 370
 Plasticity is observed under these £ 350 S
0 330
femperatures and stresses S 310  ——LC1+25% heat flux, same cooling -
'_ .
« Creep will be an additional concern o | T R hpat iy 2SR coqing
under these conditions and is not 250 LG *25% heatfiux *50% cogling
accounted for in these models Pt 2 4 s e T80
FIRE DECK Repitylron)

Baseline (190 bar PCP)

High flux (~225 bar PCP)
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Strain in head for CGl for
baseline (L) and high-flux (R)
condifions

Conditions: CGIl, model
with plasticity

EV: Exhaust valve
IV: Intake Valve
Fl: Fuel Injector
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Summary of findings

Combustion

e For this engine design and operating strategy, ~25% greater combustion
heat flux results in 225-240 bar operation

 Temperatures rise by 25-50 °C at higher specific-power operation

o CGl experiences ~20-30 °C higher temperatures just from thermal
conductivity differences compared with engine-grade gray cast iron

Materials
 Temperature has a significant effect on stresses developed in the head

e Stresses in head reach plastic regime, so models must account for
plasticity

e Higher temperatures and stresses at higher engine specific output
suggest that creep is expected to be a greater concern

NATIONAL
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Future work may extend methods to other domains

 Complete heavy duty, fransfer methodology

* Focus on light-duty engines
e Lightweight materials constraints have implications
 Different architectures
» Different combustion strategies

e Lower service-life environment with lower cost margins
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Responses to Prior-Year Comments

Numeric scores on a scale of 1 (min) to 4 (max)
400

» This Project @ Sub-Program Average

3.50

3.00

250

200

1.50

1.00

0.50

3.00 267 233 283

0.00
Approach Tech
Accomplishments

Collaboration ~ Future Research Weighted Average

Comment: Combined treatment of fatigue

and creep should be developed, focusing
on residual stresses left by the heating-
cooling cycles, which can lead to crack
initiation.

Response: We are now completing the

Relevant to DOE Objectives Sufficiency of Resources

Sufficient
33%

Insufficient
67%

analysis at the highest combustion heat
loading and intend to complete the overall
cycle analysis by accounting for low-load
and transient conditions.

Comment: Collaborations and interactions

should be more explicitly stated.
Response: We mention the degree of

%C)AK RIDGE | {5 skrarion
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collaborations but not specific names or roles
to protect sensitivities of some collaborators.
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Collaborations

Data exchange
— An OEM provided operating data for validation of HD model

Model exchange
— An OEM provided initial FE model
— ORNL shared FEA results with an OEM

Materials

— An OEM provided materials for properties measurements at
ORNL

— ORNL shared materials properties measurements with an OEM
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Contact:
Summow Allen Haynes

haynesja@ornl.gov

Relevance

* Directly addressing materials barriers to enable advanced engine and powertrain
systems for propulsion applications

Approach

* Apply computational methods linking experiments and numerical simulations to
accelerate materials selection and development

» Extend capabilities to address problems using novel approaches

Accomplishments

* Progressed on state-of-the-art co-simulation of combustion and materials thermal
properties

» Decomposed effects of pressure and temperature on stresses and strains in two
materials

* Evaluated roles of material and design on temperatures, stresses, and strain

* Continued measurement of materials properties of CGIl-450 at engine-relevant
temperatures

Collaborations
» Collaborations with industry partners are producing shared materials and ideas that
are relevant to commercial application in next-generation powertrains

Future work
» Specify workflow for determining future HD engine operation to meet lifespan needs
 Transition methodology to projects evaluating LD engines

QOAK RIDGE |} hrarion

National Laboratory | RESEARCH CENTER

Any proposed future work is subject to change based on funding levels
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