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Overview

Timeline
• All projects new in FY2019
• Projects end after FY2021

• Understand and improve 
combustion during cold start to 
reduce emissions

• Provide a comprehensive 
understanding of fuel sprays with 
support from advanced diagnostics 
and high-fidelity modeling tools

• A comprehensive understanding of 
fuel sprays, combustion, and 
emissions formation is needed to 
develop optimal combustion 
system designs

Barriers

• Catalysts: Ford, Daimler
• Cavitation: Powell, Som, Pickett, 

ECN, Co-Optima Fuels Team

Collaboration

Budget
• CN and Cold Start: $222k
• Oxy Fuels and Cold Start: $160k
• Cavitation Modeling: $120k
• Cavitation Measurements: $155k 

E.2.2.8 - Catalyst light-off and cold-start emissions (Wissink)
E.2.2.9 - Catalyst heating operation (Busch)
G.2.18 - Effect of Fuel Properties on In-nozzle Cavitation (Som)
E.1.4.1 - X-ray Measurements of Injection and Mixture Formation (Powell)

Four 
Projects



Relevance: The Big Picture
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In-Cylinder Emissions Reduction (sprays, mixture formation)
• Cavitation Modeling, Cavitation Measurements
• Cavitation and erosion alter injection and combustion , and depend on the physical 

properties of the fuel

In-Cylinder Effects on Emissions Control (catalyst heating, cold start)
• CN and Cold Start, Oxy Fuels and Cold Start
• Fuel properties impact combustion, emissions, and aftertreatment performance

DOC SCRDPF

Develop a fundamental understanding of the relationship 
between fuel properties and emissions



Relevance
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• In-cylinder emissions reduction requires detailed knowledge of 
fuel effects on injection and mixture formation

• Objective: Perform nozzle flow measurements and simulations to 
characterize the influence of critical fuel properties on cavitation. 
Identify fuel properties that increase cavitation and erosion. 

• Impact: Improved fundamental understanding of cavitation and erosion. 
Integrate a new cavitation erosion model into a computational screening 
tool for new fuels.

• Decreasing emissions at cold start requires either decreased 
engine-out emissions, or faster catalyst light-off

• Objective: Assess the ability of cetane number to increase exhaust 
temperature

• Objective: Assess the ability of oxygenated fuels to lower HC emissions
• Impact: Improved understanding of how fuel properties can be 

manipulated in order to decrease emissions under cold start conditions



Milestones
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Month / Year Description of Milestone or Go/No-Go 
Decision

Status

March 2019 Oxy Fuels & Cold Start: GO/NOGO: Assess infrared 
in-cylinder imaging technique to detect aldehydes

NOGO: IR signature 
not detected

March 2019 Cavitation Modeling: Differences in cavitation 
characteristics for different MCCI fuels 
characterized.

60% complete 
(awaiting properties 
for MCCI fuels)

June 2019 Oxy Fuels & Cold Start: Complete initial 
thermodynamic/UHC emissions assessment of three 
oxygenated blendstocks

On track

June 2019 CN and Cold Start: Quantify impact of cetane 
number on exhaust enthalpy under cold-start 
conditions for bookend fuels 

On track

June 2019 Cavitation Measurements: X-ray imaging of 
cavitation intensity and extent in MCCI nozzles with 
three fuel blends

On track



Approach – CN, Oxygenates, and Cold Start
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• MCCI cold-start strategies use retarded post injection to increase exhaust temperature and 
quickly reach catalyst light-off – limited by NOx/HC emissions

• Modest increase in cetane number (CN) has been shown1 to allow increase of exhaust 
temperature within emissions constraints

• CN approach: explore limits of this strategy with high-CN renewable diesel on a multi-cylinder, 
heavy-duty MCCI engine platform (ORNL) – directly applicable to new CARB emissions 
regulations (0.02 g/bhp-hr NOx)

– Do the benefits of increasing CN continue proportionally or reach point of diminishing return?
– Can further increases in exhaust temperature be made without increasing NOx/HC emissions?
– Does high-CN fuel with late post create any unburned or partially-oxidized species that affect catalyst 

performance?
• Oxygenate approach: thermal, emissions, and optical measurements in a single-cylinder swirl-

supported diesel engine (SNL) using three different oxygenate blends with certification diesel
– Are oxygenated blendstocks able to decrease pollutant emissions for a given exhaust temperature or 

enable later post injection combustion phasing?



Accomplishments: CN and Cold Start
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• Engine platform and experimental hardware selected
– Multi-cylinder Detroit DD15, 139 mm bore size representative of segment
– Open ECU architecture: full control of common rail and injections
– Instrumented cylinder head for combustion analysis
– FID for total HC emissions, FTIR for detailed speciation

• Fuels have been selected and acquired
– Low CN fuel: US 2007 Certification Diesel

• ~46 CN, 178-337 °C boiling range
– High CN fuel: Paraffinic Renewable Diesel

• ~75 CN, 189-309 °C boiling range
• Facilities upgrade required to maintain cold-start conditions specified 

by ACEC Tech Team (20 °C coolant and oil)
– Chiller has been specified and requisitioned
– Facilities expected to be fully operational in April

• On track to perform experiments to quantify impact of cetane number 
on exhaust enthalpy under cold-start conditions in FY19



Accomplishments: Oxy Fuels and Cold Start
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• Thermodynamic and exhaust HC emissions measurements have been completed for post 
injection timing sweeps with three oxygenated blends:
– OME blend, dibutyl ether, and 1-octanol splash blended with cert diesel

• Oxygenated additives can significantly reduce total hydrocarbon emissions
– Ethers do this more effectively than 1-octanol

• Oxygenated additives affect the ignition and combustion of the pilot and main injections, but 
the impact on the post combustion depends on post injection timing
– The combustion of late post injections is not significantly affected by post injection timing
– Preliminary evidence: changing fuel composition may not promote robust ignition of late posts



Approach: Cavitation Modeling
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• Fuel property effects on cavitation and erosion are tested using 
a suite of techniques with varying levels of fidelity and 
complexity

• Erosion propensity and severity assessed using model 
developed at Argonne within the DOE Core Program1 and 
validated for single pure fuel2

• Local sensitivity analysis used to identify influential fluid 
properties

• Pure fuels of interest tested in geometries of varying 
complexity:
Throttle Research Grade Injector : 

ECN Spray C
Commercial 

Multi-hole Injector

1. S. Som AMR Presentation: acs075_som_2018
2. Magnotti et al., ICLASS 2018. 



1. Magnotti and Som, ILASS-Americas, 2019. 

Accomplishment: Cavitation Modeling
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• Simulations in the throttle geometry 
were used as an initial fuel screening 
tool to assess their relative cavitation 
and erosion propensity

• Comparison of MCCI and SI fuels with 
baseline fuels:

• n-dodecane
• hexadecane
• methyl decanoate (MD)
• undecane
• iso-octane
• ethanol

• Variance-based sensitivity analysis1 of 
cavitation and erosion predictions to 
selected liquid fuel properties revealed 
strong dependencies on liquid density 
and dynamic viscosity, respectively

• For pure fuels, the predicted erosion 
severity ranking was found to be 
negatively correlated with the liquid 
dynamic viscosity

methyl 
decanoate

ΔP = 225 bar

n-dodecane

Predicted Erosion 
Severity Ranking

Fuel µ = µ(T = 330 K)
[Pa-s]

1 iso-octane 3.26E-04

2 n-dodecane 8.52E-04

3 ethanol 6.16E-04

4 undecane 6.99E-04

5 methyl decanoate 1.12E-03

6 hexadecane 1.66E-03

Erosion Propensity has been Predicted for Several Fuels



Approach: Cavitation Measurements
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Multi-hole diesel injector eroded 
by low-vapor-pressure fuel

• There is some understanding of how fuel properties (esp. vapor 
pressure) effect cavitation, but almost no work is available on 
erosion

• Fuels with lower vapor pressure may lead to more severe erosion
– Enhanced cavitation
– Higher intensity pressure waves at bubble collapse

• Two areas of investigation
– Measurements of cavitation: 

Fundamental measurements of 
how fuel properties affect 
cavitation

– Measurements of erosion: 
Measurements of nozzle erosion 
and the effect of fuel properties



Accomplishments: Cavitation Measurements
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• Recent measurements imaged flow 
separation in the “Spray C” nozzle

• Studied cavitation intensity and extent 
for three fuels with a range of vapor 
pressures

• Flow is similar between iso-octane and 
n-dodecane. 

• Hexadecane shows weaker, less-
defined flow separation layer. 

– Lower vapor pressure, higher 
viscosity

– Cavitation is more dynamic
– Dynamics may impact fuel spray 

distribution, combustion
• Fuel effects on cavitation measured 

under realistic conditions for the first 
time

n-dodecane

iso-octane

n-hexadecane
Pinj = 1500 bar, Pamb = 20 bar



Accomplishment: Cavitation Modeling & Expt
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n-dodecane

LES simulations performed 
with fixed maximum needle lift

Simulations of ECN Spray C 
showed a Gas Volume 

Fraction distribution that is 
comparable to that found 
in x-ray experiments and 

can help explaining its 
nature and composition

X-ray flow tomography 
data of n-dodecane
injection at 1500 bar

Methyl-decanoate

Large velocity and mass flow 
rate differences (10%) due to 

different fuel properties

Gas volume fraction is similar 
at quasi-steady-state flow 

conditions

Measurements and Predictions of Show Good Agreement



Response to Previous Year Reviewers’ Comments
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All four projects are new in FY 2019, and were 
not reviewed last year



Collaboration and Coordination with Other Institutions
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• CN and Cold Start 
– Daimler, Ford: Technical discussions and support
– Neste: Renewable diesel

• Oxy Fuels and Cold Start
– Ford Motor Company: regular meetings and teleconferences to 

discuss experimental approach and results

• Cavitation Simulations
– Argonne: Experimental team and Leadership Computing Facility 
– Univ. Central Florida, NREL: fuel physical properties
– Univ. of Perugia: Collaboration on Spay C simulations

• Cavitation Measurements
– Argonne: Simulations team and Advanced Photon Source
– Sandia, Engine Combustion Network: Injectors for study, choice of 

operating conditions, dissemination of results



Remaining Challenges and Barriers
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• CN and Cold Start 
– Current approach with two “bookend” fuels does not indicate if trend is linear or has 

antagonistic or synergistic behavior at intermediate CN or fuel blend levels
– Need to translate impact of exhaust enthalpy and emissions under cold-start 

conditions to light-off performance of diesel oxidation catalyst

• Oxy Fuels and Cold Start
– Need a mechanistic understanding of how oxygenated components impact mixture 

formation, ignition, and combustion processes to enable cleaner cold start operation 

Cavitation Simulations
– There is limited availability of experimental data to characterize multiphase flow 

development and erosion severity for a range of fuels, especially in practical 
geometries. Collaborating with experimentalists who can provide such data is critical 
to validating and informing paths towards predictive fuel screening tools

• Cavitation Measurements
– Running injectors for extended erosion tests is not practical at Argonne. Need to find a 

partner who can assist us with this task. 



Proposed Future Research 
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• CN and Cold Start 
– Experiments will use blends of the “bookend” fuels, other high-CN fuels to identify non-linearity or 

diminishing returns in CN trends for exhaust enthalpy and engine-out emissions
– Use measured exhaust species concentrations as input conditions for bench-flow reactor study of 

impact of CN and diesel oxidation catalyst light-off performance. Distribute results through CLEERS.

• Oxy Fuels and Cold Start
– In-cylinder high-speed liquid and vapor-phase fuel imaging, natural luminosity imaging to understand 

oxygenate impacts on mixture formation, ignition, and combustion

• Cavitation Simulations
– Complete simulation of pure fuels in research nozzle, validate with x-ray experiments
– Extend screening tool to evaluate cavitation, erosion of fuel blends, with blending limit guidelines. 
– Evaluate multi-hole injectors, increase fidelity using HPC and Argonne-developed best practices

• Cavitation Measurements
– The cavitation simulations group has requested measurements using methyl decanoate because of 

its predicted low propensity for erosion. Future measurements will attempt to validate this. 
– Measurements of erosion in a canonical nozzle geometry, establishing the link between fuel 

properties and erosion rates.

Any proposed future work is subject to change based on funding levels



Summary
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• CN and Cold Start 
– Cetane number (CN) is an important fuel property for MCCI as it can dictate how 

aggressively the post injections can be retarded for quick catalyst warm-up during 
cold-start. This task will quantify the effect of high-CN fuel on engine-out exhaust 
enthalpy and emissions under cold-start conditions.

• Oxy Fuels and Cold Start
– Oxygenated fuels reduce total hydrocarbon emissions in MCCI catalyst heating 

operation, but further study is needed to understand their impact on the ignition 
of late post injections

• Cavitation Simulations
– Computational screening tool for pure fuels identified trends relating fuel properties to 

cavitation, and flagged fuels with increased propensity for cavitation and erosion

• Cavitation Measurements
– Measurements have found variations in cavitation with fuel properties. The 

measurement results will be shared with the simulations group to validate their work.
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