High-Efficiency, Medium-Voltage-Input, Solid-State-Transformer-Based 400kW/1000-V/400-A Extreme Fast Charger for Electric Vehicles

DE-EE0008361

Dr. Charles Zhu, Principal Investigator Delta Electronics (Americas) Ltd June 13, 2019

ELT241

Timeline

- Start December 1, 2018
- Finish November 30, 2021
- 17% complete

Barriers

- System architecture and control for solid state transformer
- Medium-voltage isolation
- Power cell topology and control for high efficiency
- SiC semiconductor devices with high dv/dt and noise

Project Overview

Budget

- Total Budget: \$7.0 million
 DOE Cost Share: \$3.5 million
 - Recipients Cost Share: \$3.5 million
- 2019 Funding Planned: \$3.2 million

Team

Lead: Delta Electronics Americas Ltd

Partners:

- General Motors
- DTE Energy
- CPES at Virginia Tech
- NextEnergy
- Michigan Energy Office
- City of Detroit

 AREA OF INTEREST (AOI) 1: Extreme Fast Charging (XFC) Systems for Electric Vehicles

Delta Electronics aims to achieve objectives by the end of program

- To design and test a high-efficiency, medium-voltage-input, solid-state-transformer-based 400-kW Extreme Fast Charger (XFC) for electric vehicles, achieving better than 96.5 percent efficiency.
- To demonstrate extreme fast charging with a retrofitted General Motors' light-duty battery electric vehicle at 3C or higher charging rate for at least 50 percent increase of SOC.
- To achieve a 180-mile charge within 10 minutes.

Budget Period 1 Milestones

BP1: 12/1/2	2018 - 11/3	80/2019		
Planned Date	Mileston e #	Milestone	Milestone Description	
2/28/2019	M1.1	Charge Interface Specification	Complete the charge interface documentation and have specification review	
5/31/2019	M1.2	SST Cells Built and 1- Phase Serial Integration complete	1-phase SST module built	
8/31/2019	M1.3	1-phase series SST and Buck cell Integrated test complete	1-phase SST cell and buck cell test results demonstrate compliance with cell specifications	
11/30/201 9	M1.4	3-phase 135kW charger integration complete	3-phase SST module built	

Approaches

□ Medium-voltage AC input, 4.8-kV or 13.2-kV

- □ Solid state transformer (SST)-based technology to reduce the size and weight, and to increase scalability and flexibility
- Cascaded multilevel converter topology as medium voltage interface to reduce the total number of power cell
- Multilevel resonant converter for medium voltage isolation, operated at high frequency with soft switching
- □SiC MOSFET devices for high voltage and lower loss
- Interface to an Energy Storage System (ESS) and/or a renewable energy generation system (e.g. PV)

Conventional DC Fast Charger Solution

Installation site for Tesla Super Charger in U.S.A

Bulky and heavyFixed voltage & power

Space consumingLabor intensive

Non expandable capacityHigh initial investment

NELTA Proposed Extreme Fast Charger Solution

Scalable voltage/power

Michigan EV Placement Optimization

2030 Low Tech Scenario 70kWh battery, 50kW charger

2030 High Tech Scenario 100kWh battery, 150kW charger

Conclusion: High-tech scenario (high power charge, large battery) has lower cost with less EV user delay.

Technical Progress

Charge Interface Specification

GM and Delta created the charge interface specification. Milestone 1.1 was completed in time.

SST based XFC System Structure

3-Φ MVAC input: •4.8kV/13.2kV •iTHD<5%, PF≥0.98 •60Hz±10%

- SST DC output:
- •1050V±3%
- •400kW power
- Interface for ESS/PV

Charger output:

- •200V~1000VDC
- •400A max current
- •SAE J1772 charging interface CCS1

XFC Specification

Power Rating	400 kW	
Input AC Voltage	4.8 kV and 13.2 kV, 3-Phase, line-to-line	
AC Line Frequency	60 Hz	
HV Battery Voltage Range	200-1000 VDC	
Maximum Output Current	400ADC	
Efficiency	96.5% peak	
Charge Interface	J1772 CCS1	
Operational Ambient Temperature Range	-25 to 50°C	
Environmental Protection	NEMA 3R (outdoor)	
Additional Interface	HVDC interface (to ESS/renewable energy source)	
SST Unit Dimensions	3000mm (W) x 1100mm (D) x 2100mm (H), estimated	
Charger Unit Dimensions	1100mm (W) x 600mm (D) x 2100mm (H), estimated	

Cascaded Multilevel AC/DC Stage

- Fewer isolation components
- Simple structure, lower cost

- f_{sw} multiplied by 2N
- Better THD, smaller filter
- Lower fsw for higher η

SST Power Cell Topology

	AC/DC	DC/DC Pri. side	DC/DC Sec. side
Topology	3-level DNPC	4-switch SHB	Full bridge
Operation	CCM, hard switching	ZVS soft switching	
f _{sw}	5~8kHz	100~200kHz	
Switching devices	1.2kV/40mΩ SiC MOSFET	1.2kV/22mΩ SiC MOSFET	1.7kV/45mΩ SiC MOSFET

Medium Voltage Transformer Design

Transformer Structure

Winding Isolation Design

- Weight: 13.2 lb
- Size: 5.1"×4.1"×5.2"
- Efficiency: 99.3%
- N=12:16
- L_m≈150µH, L_k≈12µH

- Shielded winding w/ epoxy
- 30kV insulation > 1min
- PD<10pC @ 12kV

SST Power Cell Hardware

Circuit only

With power cell case

- Size:33.4"x7.8"x7.8"
- Weight: 51 lb

SST Power Cell Experimental Waveforms

AC/DC stage waveforms (Line Cycle)

DC/DC stage waveforms (Switching Cycle)

 Good THD and power factor at AC grid side Soft Switching for high efficiency at high switching frequency

SST Power Cell Test Results

Test Condition: forced air cooling, 25°C ambient. 800Vac input and 1kVdc output. 100% load at 15kW

Charger Module Topology

Charger module output profile

Charger Module Hardware

- Size:16.5"x3.1"x30"
- Weight: 79 lb
- Power density: 77W/in³

Selta Charger Module Efficiency Measurement

21

SST Cell + Charger Module Test

Delta Livonia Automotive Lab

Test conditions:

- AC input: 623V, 800V, 931V
- SST cell output: 1050V
- Charger output: 200V, 600V, 950V
- Tested power: 10%~100% load (15kW)

Partners

Activities

DOE XFC Program Kick-off Meeting at Delta Livonia Office, August 16th, 2018 Technical Meeting at Future Test Site at NextEnergy, November 26th, 2018

Proposed Future Works

- Remainder of FY 2019
 - Test 1-phase 45kW charger integrated.
 - Build 3-phase 135kW charger.
- FY 2020
 - Test vehicle HVDS/RESS.
 - Test integrated 3-phase 135kW charger.
 - Test 4.8kV XFC system in lab.
- FY 2021
 - Build test vehicle.
 - Test 4.8kV XFC charging test with vehicle.
 - Test 13.2kV XFC charging test with vehicle.

Smarter. Greener. Together.

To learn more about Delta, please visit www.deltaww.com

or scan the QR code

English

Tradition Simplified

Chinese

al

