Highly Integrated Wide Bandgap Power Module for Next Generation Plug-In Vehicles

Marko Jaksic, Principal Investigator General Motors, LLC 12 June 2019 DE-EE0007285

GENERAL MOTORS

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start 1 January 2016
- Finish 30 September 2019
- 67% Complete

Funding

- Project Budget \$5.67 million
 \$3.79M Federal Share
 \$1.88M GM Cost Share
- 2018 funds received \$0.88M
- 2019 funding planned \$1.09M

Vehicle Technology Barriers

- Lower Cost Electric Drive Systems
- Higher Efficiency, long range EV
- Higher Performance and Lifetime
- Lower Mass and Volume

Project Team

• Lead:

General Motors, LLC

Subrecipients:

Virginia Polytechnic Institute and State University

Oak Ridge National Lab

Monolith Semiconductor, Inc.

- Key Suppliers: Wolfspeed (Cree Power)
- Collaborations:
 PowerAmerica

2

Project Relevance

Research Focus Area: Traction Inverter

- Develop WBG semiconductor based power stage
- Technical development for key components needed for a WBG power stage: design compact gate drive, power module, high voltage capacitor, integrate commercial current sensor, use production ready GM control board

Objective

- Automotive power module with SiC MOSFET dies
- Reduce traction inverter and electric motor losses over the drive cycle and quantify efficiency benefits
- Develop technology for long range BEV's with >600V battery
- Implement selected bonding, joining and thermal management solution (low $Z_{\rm th},$ long lifetime and reliability)

Address DoE Targets

- Enable inverter to meet or exceed DOE 2020 targets:
- Power Density: 13.4kW/l; Specific power: 14.1kW/kg & \$3.3/kW
- Efficiency >94% (10%-100% speed at 20% rated torque)

Uniqueness and Impacts

• Compact, high temperature, low inductance automotive package

GENERAL MOTORS

3

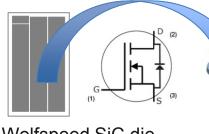
Milestones

Date	2016-2018 Milestone or Go/No-Go Decisions	Status
Dec - 2016	Initial Power Module Design - Milestone	Completed
June - 2017	Power Module Detailed Design – Phase 2 Go/No-Go	Go
Dec - 2017	Prototype Manufacturing Process - Milestone	Completed
April - 2018	SiC MOSFET Final Builds and Die Tests - Milestone	Completed
June - 2018	Power Module Prototype Perf. – Phase 3 Go/No-Go	On-Track
Oct - 2018	Prototype Performance Test Completed - Milestone	On-Track
Nov - 2018	Power module and power stage fully characterized	Completed
Dec - 2018	Performed vehicle range study	Completed
Dec – 2018 to Mar - 2019	Rescoped phase III of the project to focus more on electric drive performance and development	On-Track
GENERAL MOTOR	5 4	

WBG POWER MODULE APPLICATIONS

Features

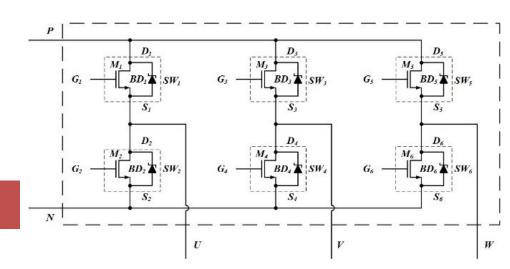
- Low conduction and switching loss
- Ultra-low parasitic inductances
- High switching frequency operation
- Normally-off device operation
- High temperature operation Tjmax=175°C
- High power high voltage power module


System benefits

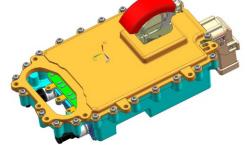
- Reduced size and weight
- Compact design and inverter packaging
- High efficiency inverter
- Increased power density
- Improved thermal performance and packaging

Potential applications

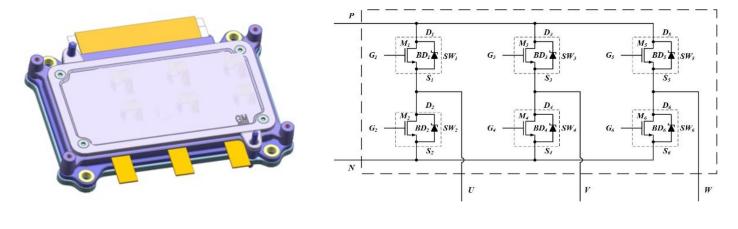
- High efficiency converters Such as dc/dc boost converter
- Traction power inverters


SiC Power Module Package

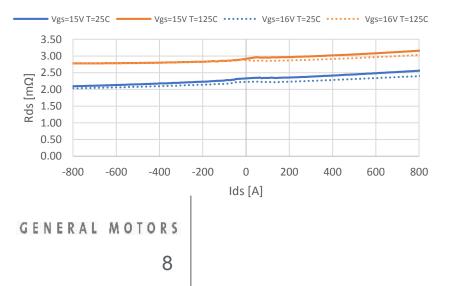
Wolfspeed SiC die 900V 10mΩ & 1200V 13mΩ



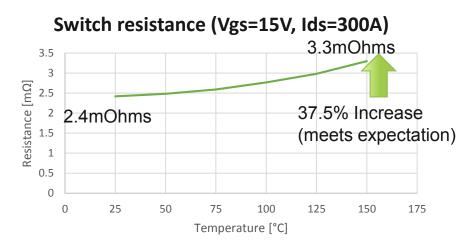
Functional Circuit


Technical Approach

- This program will develop a highly integrated wide band gap automotive power module with smaller package, lower mass and higher efficiency
- Targets higher DC link bus voltage systems (e.g. 600-800Vdc) and maximum phase currents of 300-500Arms
- The high power density module utilizes SiC MOSFET die to enable high efficiency operation
- Higher power density will be further enabled through the removal of the external diode by using the third quadrant operational capability of the SiC MOSFET
- Design a package that has low stray inductance
 - Target below 10nH for the complete power stage
 - Design power module stray inductance below 5 nH
- Develop advanced current sensing and short circuit protection methods


Accomplishments: Sintering

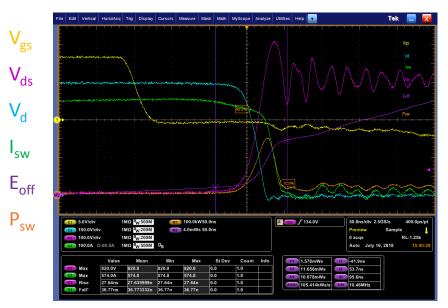
- Sintering is selected as the attachment method to enable higher temperature operation and long-life reliability
- Both pressure and pressure-less sintering has been evaluated
- Pressure sintering (>10MPa) has been implemented in the power module
- Power module design is more compact as sintered layer conducts heat more effectively
- Results in lower thermal impedance and small cross heating among die, enabling positioning in closer proximity
- High density package of the power module


Accomplishments: Static Characterization

- SiC MOSFETs exhibit low on-state resistance even if biased with low gate source voltages
- Switch resistance reduces when MOSFET conducts in the reverse direction and increases linearly as current is increased
- Switch resistance is close to 2.4mΩ at room temperature and it reaches 3.3mΩ at 150°C

Switch resistance

Accomplishments: Representative Switching Waveforms

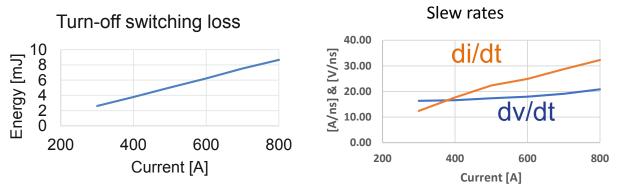

Turn-on waveforms 600V, 500A

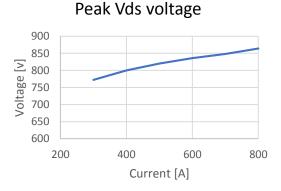
E_{on}=13.37mJ

Turn-off waveforms 600V, 500A

E_{off}=10.08mJ

Time scale: 50 ns

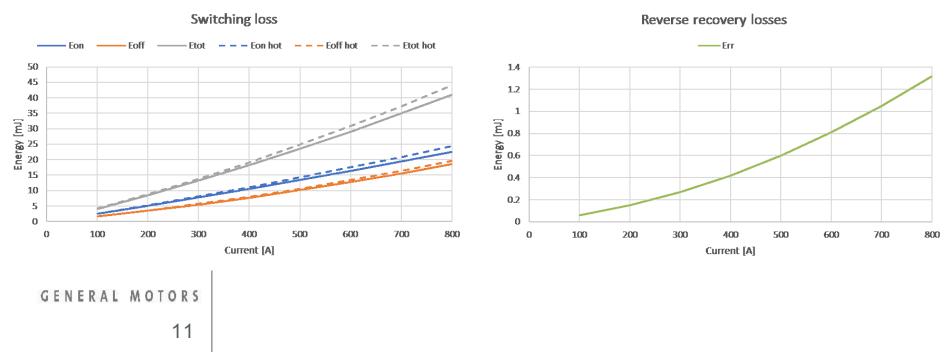

Gate drive +16V, -4V, distributed R_{α} to reduce oscillations, fast slew rates achieved


GENERAL MOTORS

9

Accomplishments: Detailed Turn-Off Performance Characterization

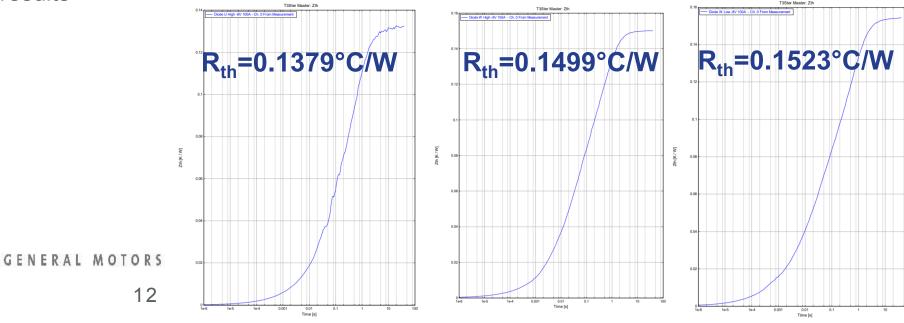
- Low switching losses are measured
- High slew rates values are observed and measured
- Peak voltage overshoot on drain source voltage is kept below the power device limit


32.21n 1.812n 38.0

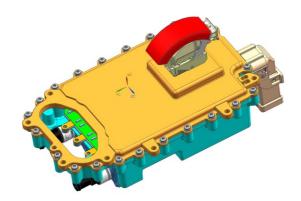
115.435kWs/s

lsw [A]	Vpeak [V]	trise (volt) [ns]	dv/dt [V/ns]	di/dt [A/ns]	Eoff [mJ]	I _{sw} =800A
300	748	31.38	15.30	11.00	2.62	V _{dc} =600V
400	784	29.17	16.46	16.80	3.8	
500	804	29.5	16.27	20.00	5.02	V _{peak} =848V
600	824	27.75	17.30	23.00	6.23	Maymmun
700	832	27.25	17.61	26.40	7.53	di/dt=37.12A/ns
800	848	26.9	17.84	37.12	8.66	
					-	E _{off} =8.66mJ

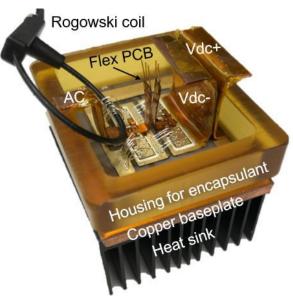
Accomplishments: Complete Dynamic Characterization

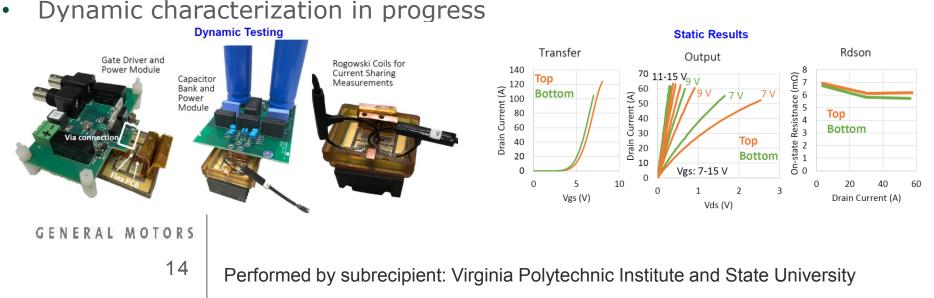

- In addition, temperature of the baseplate is controlled to provide module characterization at increased temperatures
- Energy curves at hot temperature are shown in dashed line
- As expected the hot temperature losses increase by several percent, in the range from 5% to 7% depending on the device current
- Ultra low reverse recovery losses, due to the fast body diode

Accomplishments: Thermal Impedance Characterization


- Power module has been installed inside the inverter housing
- Thermal impedance measurements performed and Z_{th} values are estimated
- Different measurement methods explored
- Most precise results obtained when biasing device through body diode (V_{gs} voltage set lower than -5V)
- Experimental measurements correlated to FEA results

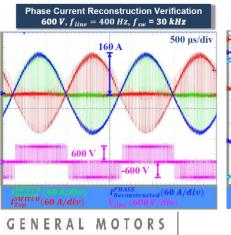
Accomplishments: Inverter Loss Estimation

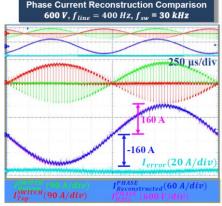

- Static and dynamic characterization results are used to evaluate power module losses
- Thermal impedance value is estimated from the material stack-up and with tri-tester measurement
- Analytical equations are derived and used to calculate inverter losses and temperature rise



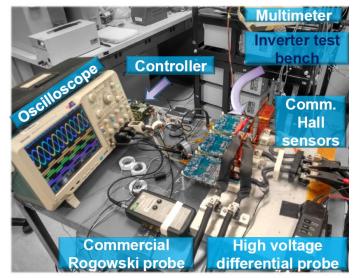
	Operating point 1	Operating point 2	Operating point 3	Operating point 4
Bus voltage	600V	600V	600V	600V
Phase current	300Arms	350Arms	400Arms	500Arms
Conduction loss	135W	184W	241W	380W
Switching loss (f _{sw} =10kHz)	63W	75W	87.5W	114W
Thermal impedance	0.15°C/W	0.15°C/W	0.15°C/W	0.15°C/W
Total inverter loss	1.14kW	1.37kW	1.75kW	2.67kW
Inverter power	168kW	196kW	225kW	281kW
Efficiency	99.32%	99.30%	99.22%	99.05%
Temperature rise	29.7°C	38.9°C	49.3°C	74.1°C

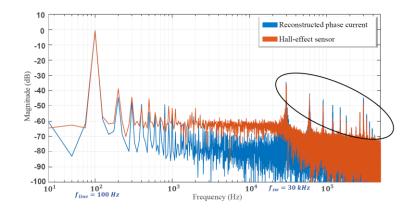
Accomplishments: Power Module Development


- Design optimization and fabrication of half bridge power module with symmetrical layout
- Cree 1200V-13mOhm die sintered on AIN DBC Substrate
- Flex circuit directly connected to the power module substrate and die
- Low inductance design
- Full static characterization of the power module is performed



Accomplishments: Gate Drive Phase Current Reconstruction


- Integrated Rogowski coil sensors are developed to provide fast short circuit protection
- Performed successful phase current reconstruction with digital implementation
- Applicable for both Si IGBT and SiC MOSFETs based power modules
- Current sensing performance is comparable to existing hall effect sensors



15

Inverter Experimental Setup

Performed by subrecipient: Virginia Polytechnic Institute and State University

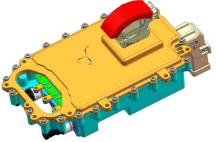
Remaining Challenges, Barriers & Future Plans

Challenges & Potential Barriers

- Power module reliability and yield during prototype phases
- Development of high bandwidth low cost current sensing
- Gate drive improvements: design reliable and fast short circuit protection that is integrated and faster than standard "de-sat" protection
- EMI noise generation due to the high dv/dt switching
- Electric motor insulation (increased dv/dt)
- Inverter cost is increased due to the high cost of SiC die

Future Plans (FY2019)

- Development of power module with 1200V SiC die
- Finalize SiC inverter packaging concept
- Test electric drive solution on dyno
- Perform power cycling tests


GENERAL MOTORS

16

Proposed future work is subject to change based on funding levels and Go/No-Go gate review

Summary

- Power module successfully built and completely characterized (SiC MOSFETs 900V, 2.5mOhm)
- Very low conduction and switching losses measured
- Gate drive solutions tested and fully developed
- Complete power stage package is about 60% of the standard Si power stage
- Package inductance, and thermal performance have been modeled & are below targets
- Prototype manufacturing process defined and verified
- High efficiency power stage built and designed that can deliver up to 280kW
- Project is progressing to phase three fabrication & inverter level testing on dyno (build new samples with 1200V, 13mOhm die)

