

Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer SuperTruck Vehicle Systems (Project ID: ace_103)

DOE Contract: DE-EE0007767

NETL Project Officer: Ralph Nine DOE Technology Manager: Ken Howden
Principal Investigator: Russ Zukouski
Navistar, Inc.

DOE MERIT REVIEW
June 11-13, 2019
October 1, 2017 – October 1, 2018

Overview: Navistar & DOE SuperTruck II

Timeline

Start Date 12-2016

End Date 12-2021

Budget

Total Project Funding:

- DOE Share \$20M
- Navistar Share \$35M

Technical Barriers and Targets

- #1 Greater than or equal to 55% engine brake thermal efficiency (BTE)
- #2 Greater than 100% improvement in vehicle freight efficiency (FE) (on a tonmile-per-gallon basis)
- #3 Development of technologies that are commercially cost effective

Partners and Laboratories

- Department of Energy
- Argonne
- Lawrence Livermore
- Bosch
- TPI Composites
- Dana

Resources Navistar Utilizes in DOE ST II Program

Partnerships and Laboratories

Functional Areas

Vehicle Architecture

Aftertreatment

Power Train

WHR

Material science

Thermal Management

Engine Architecture

Aero

Combustion

Electronics

Fuel system

Hybrid

Air Handling

Program Plan

MILESTONES

Budget Period 1 Requirements / Technology Assessment & Initial Hardware Testing

Budget Period 2 - Technology Development & Concept Readiness Demonstration

Budget Period 3 - Technology Finalization & Validation

Budget Period 4 - Tractor/Trailer Fabrication, Integration & Commissioning Demonstration

Budget Period 5 - Fuel Economy & BTE; and Program Completion

Program Milestones

Engine Objective

 Attain greater than or equal to 55% BTE demonstrated in an operational engine at a 65-mph cruise point on a dynamometer.

 Develop engine technologies that are commercially cost effective.

 Contribute to greater than 100% improvement in vehicle freight efficiency (FE) relative to a 2009

baseline.

Combustion & Fuel System

- Combustion system focus remains on optimizing the combustion process
- Key parameters of fuel-injection configurations include number of holes and nozzle flow rates
- Rapid break-up of spray core results in faster combustion
- Peak efficiencies achieved through optimizing air utilization and mixing process control
- Increasing PCP improves combustion efficiency

Energy Balance

- Analysis had shown a significant amount of heat rejection to engine coolant
- A low-heat transfer liner was procured and investigated to minimize the heat loss to coolant
- The results showed that block heat rejection was reduced as expected – however, an increase of oil heat rejection was observed
- As a result, the BSFC remains similar between the baseline and the low-heat transfer liner

Thermal Management

- High-temperature pistons investigated
- New piston design resulted in higher exhaust temperature – helpful to ORC, but worse for BSFC
- As a result of this work, we found that increasing oil temperature by ~100°F resulted in 1% BTE gain

WHR & System

- Based on the temperature characteristics of the heat sources, the ORC system was optimized
- Different working fluids were evaluated, including refrigerant
- The expander's efficiency has a direct impact to ORC BTE gain
 - A 10% increase in expander efficiency results in a gain of 0.5% in ORC BTE for the same working fluid

ANL – Gasoline Compression Ignition (GCI)

- GCI Goal: Increase portion of premixed combustion, using three strategies (focused at ST I A50 condition):
 - Early pilot injection (EP)
 - Late pilot injection (LP)
 - Early/late pilot injection and port fueled injected/direct injection (PFI/DI)
- Two gasoline fuels selected for evaluation:
 - 1. EEE, EPA Tier II Certification Gasoline
 - 2. E85, blended in-house with 85 vol% dry ethanol and 15 vol% EEE
- Results:
 - EEE gasoline performed best with late pilot injection strategy
 - E85 gasoline performed better with PFI/DI strategy
 - Both EEE & E85 could achieve better brake efficiency than the diesel baseline

Aftertreatment Technical Accomplishments & Progress

Emission Control

Mixer Development and AT Architecture

- Evaluation of close-coupled SCR (CCSCR) showed the best performance when using a large diameter
- CCSCR brick was installed upstream of the DOC and packaged within a common converter
- Smaller diameter CCSCR system displayed high restriction; bypass valve did not package well
- Next Steps: System assessment in progress for optimal AT design and installation

Components installed near turbo outlet (currently using design C)

Aftertreatment Technical Accomplishments & Progress

Balancing NOx conversion Over Upstream and Downstream SCR

- TP NOx over composite FTP and RMC is below 0.2 g/hp.hr
- AT system provided over 98% NOx conversion over composite FTP
- Adjusting calibration table allowed for dynamic dosing
- Upstream SCR efficiency 70%-95% composite FTP and 80%-95% hot FTP
- Goal is tunable from 50% to 95% (composite)
- No evidence of DEF deposits at upstream DEF dosing

Benefits of Upstream SCR

- Rapid light-off observed → within first minute of cold FTP
- High NOx conversion
- Addition of AMOX zone minimized N₂O
 formation → no NH₃ slip to DOC/DPF

SCR Conversion Split [hot FTP]

Vehicle Objective

Research, develop, and demonstrate a vehicle that achieves the following goals:

• Greater than 100% improvement in vehicle freight efficiency (FE) (on a ton-mile-pergallon basis) relative to a 2009 baseline with a stretch goal >140% improvement.

Aerodynamics

- Body, Aero, Trailer and Composite Frame Rail execution continued through detailed design phase.
- Employed aerodynamic ducting approaches to reduce pressure in stagnant leading surfaces for overall reductions.
- Initial composite material selection was done with a completive production cost. Carbonfiber utilization minimized.
- Estimated mass reduction for body structure, hoods, and exterior aero devices is >500 lb.
- Trailer will utilize high-level of composite material.

Composite Frame

- Simulation indicates up to a 25% mass savings vs. a steel-frame ladder, assuming integrated crossmembers and channel design.
 - Mass reduction On target (mass reduction over steel frame ladder)
- Design Status: Recovery loads
 - Horizontal Towing Pass
 - 45-deg conical Recovery Pass
 - Frame Deflection Pass (comparable to metal frame)
 - Racking Loads (Turning) Conditional Pass (comparable)
 - Chassis twist Conditional Pass (comparable)
 - Cross twist Conditional Pass (comparable)
- Remaining Analysis/Testing/Development
 - Develop epoxy matrix material properties Targeting a matrix material Need to develop fatigue curve with chosen matrix material
 - Consolidate connection points Design to limit or reduce the number of through-bolts.

Advanced Cooling

Continued optimizing the cooling-system configuration for the truck

- Radiator to handle engine cooling with smart flow control
- Low-temperature loop will be used to supply coolant for battery, electric motor/generator, and other accessories
- Electric fans will be used for cooling
- Eclectic driven water pump.
- AC condenser and fan will be a stand-alone unit
- Continued the cooling-system-packaging study, with preliminary results illustrated.

Aerodynamic team and Analytic Group are evaluating cooling-module placement, together with the truck frontal design themes

Powertrain

Completed 3D-CAD packaging study to fit extra components on the truck

- Sized-up 48V Lithium batteries pack Completed (Build Books)
- Procured all major components and required installation parts:
 - AMT transmission
 - DANA Ultra fast drive axle
 - DANA Carbon Fiber composite drive shaft
 - lightweight prototype hub design from Timken for ST II tag axle
- 3+ lb/hub weight reduction vs. ST I
- Aluminum casting with integrated Gen.2 PDEF bearing.

Connected Cruse Control

Improving Fuel Economy of Heavy Duty Vehicle in Traffic using Connectivity and Automation

- Continued development on ACC/CCC
- Moved development to vehicle
 - Collected data necessary for developing feed-forward-control portion of algorithm
 - Creating response maps for a given control input.
- Down-selection of components is complete.
- Evaluating code and port to the new API

Summary: Budget Period 2

Technology Development & Concept Readiness Demonstration

<u>Approach</u>: Develop & implement detailed R&D path for required components / subsystems, ensuring successful completion of overall program goals

Overall

Continued economic & energy impact analyses of component technologies to prepare for BP3

Engine: ≤ 55% BTE Architecture

- Continued investigation of further reductions related to friction model
- Completed exhaust and EGR system design modifications; continued air system turbocharger efficiencies
- Used optimized WHR model configurations
- ANL, used new GCI strategy to continue evaluation of system and fuel performance opportunities
- Aftertreatment demonstrated dual DEF dosing concept that is capable of reducing high engine-out NOx to less than 0.2 g/hp.hr over the FTP and RMC

Vehicle: >100% improvement in FE

- Finished Mule build, including addition of hybrid transmission, wiring harnesses, and lightweight tag axle;
 evaluating integrated disc brakes
- Upgraded control strategy, GPS-based gear shift optimizer; and improved drive-off and overall shift quality
- Worked to increase battery life and performance (e.g., hybrid batteries)
- Optimized cooling system configuration (e.g., radiators, fans, water pumps, cooling-module, HVAC system)
- Continued controls architecture development, evaluating braking strategies, integration of ZF systems, and ACC/CCC

Challenges & Barriers, Including Proposed Future Research

Budget Period 3 - Technology Finalization and Validation

Complete economic & energy impact analyses of component technologies, as well as GCI combustion and nanofluid development

Approach:

- Finalize down-selection of:
 - In-cylinder combustion systems
 - Hybrid powertrain systems
 - Advanced vehicle electrification system
 - Advanced aftertreatment systems
- Continue evaluation and selection for:
 - Waste Heat Recovery (WHR) system development
 - Drivetrain & chassis efficiency improvements
 - Aerodynamics improvements

Questions - Comments