DAIMLER

Improving Transportation Efficiency Through Integrated Vehicle, Engine, and Powertrain Research - SuperTruck II

Derek Rotz, Principal Investigator, Vehicle Jeff Girbach, Principal Investigator, Powertrain June 13, 2019

Daimler Trucks

Project ID: ACE100

This presentation does not contain any proprietary, confidential, or otherwise restricted information

BHARATBENZ

Overview

Project Total \$40Mil 2018 Summary								
DOE Share	\$	20,000,000						
Michelin	\$	1,000,000						
ORNL	\$	500,000						
NREL	\$	203,254						
Detroit Share	\$	12,468,918						
DTNA Share	\$	5,827,829				Total	DTNA	DDC
				2018 Plann	ned	12,270,352	2,668,167	9,004,185
				■2018 Actua	al	9,334,148	2,488,671	6,845,477

Barriers

- Our first prototype component integration is underway on the A-Sample Truck, but making all the systems work together is the biggest challenge.
- Prototype controls integration on top of series controllers remains a difficult task.

Project Partners

- Schneider National
- Strick Trailer
- Michelin
- Oak Ridge National Labs
- National Research Energy Laboratory
- University of Michigan
- Clemson University

Objectives – Project Phases

	Aero Tinker Truck Assembled	100%	April 2018
Phase 2	Prototype DD13 Engine Delivered to DTNA	100%	Sept 2018
	A-Sample Design Release	100%	Dec 2018
Phase 3	A-Sample Assembled	100%	June 2019
Filase 3	A-Sample FE Validation Test Complete	30%	Dec 2019

Approach – SuperTruck 2 Roadmap Update

Phase 1: Goal setting via simulated conceptual FE targets

Phase 2: Simulation of designed systems (ie, CFD, rolling resistance, etc..)

Phase 3: Validation of physical prototypes (A-Sample testing)

Expected reduction of FE going from conceptual to designed components

Phase 1 Conceptual Goal Targets

Phase 2 Design Simulated Status

Phase 3 Prototype Validation

Technical – Aerodynamic & Exterior Development

Technical – Chassis Developments

48V Configuration

A-Sample System Layout

Replace alternator with 48V motor generator:

- Pull power off the engine in place of the alternator.
- Consume battery power as an e-motor to assist powertrain.
- Allows for energy recovery "mild hybrid".

Collaboration: First Prototype Integration A-Sample Truck

Summary of Technical Investigations

Phase 2 Simulated & Design Status

Phase 3 Prototype Validation

	Main Path	Stretch Items	Investigation Topics
ے۔ Aero	 Aero front Improved tractor-trailer gap mgmt Improved wheel treatments Aero windshield Mirror cameras Improved aero seals 	Under hood airflow	Roofcap shape changes
Engine	 Down-sped, high BMEP DD13 engine High peak firing pressure Heat loss & friction reduction measures Active drivetrain fluid temperature control 	 In-cylinder thermal barrier coatings Additional WHR heat sources Real-time predictive powertrain control 	
Chassis & Powertrain	 High FE Tires (Michelin) Thermal system Advanced axle system 	 High FE gear oil AC Condenser w/electric fan 	Axle temp management
Energy Management	 48V Mild Hybrid 48V Power Steering Improved pHVAC system (NREL) 	 48V Water Pump 48V HVAC Compressor 	 Higher capacity battery systems Clutched Air Compressor
Controls	 Pairing Eco Roll 2.0 Mechatronics System Integration 	 Intelligent Controls HMI for new systems 	

DAIMLER

SuperTruck 2 Powertrain

Jeff Girbach, Principal Investigator, Powertrain June 13, 2019

Daimler Trucks

Project ID: ACS 100

BHARATBENZ

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Approach – Powertrain Research Components

- Designed and analyzed a number of BTE improvement measures
- Experimental evaluation on-going
- Two primary test platforms in Detroit
 - Dedicated Tinker Truck vehicle
 - Engine test cell

Downspeeding enablers

- Two stage turbocharging
- Interstage cooling
- High hydraulic flow injectors

Faster combustion enablers

- High compression ratio
- Higher peak cylinder pressure
- Redesigned bowl shape
- Thermal barrier coating

Air System

- Miller cycle valve timing
- Long loop EGR
- Two stage EGR cooling

<u>Controls</u>

- Model predictive controls
- Transient calibration optimization

Parasitics

- Oil flow reduction
- Low viscosity oil
- Higher oil temperature
- Active piston cooling jets
- Liner surface conditioning
- Variable speed water pump

Waste Heat Recovery

Phase Change Cooling WHR

<u>Aftertreatment</u>

Close-coupled SCR

Fluid Temperature Management

- Split Cooling System
- Transmission temp. management

Technical – Collaboration with ORNL

SUPERTRUEK

Actional Laboratory

- Developped ST2 DD13 Combustion & conjugate heat transfer (CHT) CFD model
- 3-D CHT on piston, 1-D CHT on liner
- Technical investigations
 - Miller Cycle (late IVC) with low-pressure EGR
 - Thermal barrier coating (TBC)
- CFD is coupled with Daimler's cycle simulation model
- Analysis results
 - Demonstrated reduced pumping losses/lower BSFC (1% at road load)
 - Demonstrated TBC's potential for reduced heat loss

- New engine installed at ORNL
- Initial firing and baseline planned for April
- Full performance and emissions evaluation capabilities
- Proposed efforts include
 - Friction pack evaluation
 - Intake conditioning studies

- Power pack testing at ORNL's Vehicle System Integration (VSI) laboratory
- Hardware-in-the-loop drive-cycle testing
- Component level to full HD powertrain
- Repeatability typically within 0.3% CoV
- Advanced transmission design evaluation
- Efforts planned for summer 2019

Technical – Thermal Barrier Coating Development

Composite

TBC/Piston FEA

- SST developing advanced plasma spraying process for thermal spray of advanced oxide TBC onto steel piston
- Plasma spray process optimized for complex geometry
- Coatings demonstrate uniform, smooth coverage over entire piston crown
- Initial durability assessment of coatings in progress

Spray Technology

High Fidelity Single

Cylinder CFD Model

Technical – Phase Change Cooling (PCC) Waste Heat Recovery (WHR)

Objectives

- Recover high quality waste heat in the cylinder head and engine block
- Deliver on 3.5% BTE potential

System description

Fluid	Water – ethanol mix (60%/40%)
Pressure	50 bar
Temperature	305°C
Vapor Power	159 kW

<u>Status</u>

- Finalizing coolant core design
- Experimental evaluation scheduled to start Q4 2019

automotive

Technical -Waste Heat Recovery (WHR)

	Refrigerant Based System	Ethanol Based PCC System
Complexity	00	0
Performance	0	0
Condenser Requirements	0	0
System Cost	00	0
Development Challenges	0	99

<image>

- Significant added complexity in both cases
- PCC system eliminates the need for a coolant circuit
- PCC requires extensive engine re-design
- Refrigerant based system poses significant heat rejection challenge

Technical – Model-**Predictive Powertrain** Controls

Reduced-Order Long-Horizon Predictive Thermal Management for Diesel Engine aftertreatment Systems

Rasoul Salehi¹, Anna Stefanopoulou¹, Siddharth Mahesh² and Marc Allain²

Abstract—Model predictive thermal management of a heavy duty diesel engine aftertreatment system (ATS) requires optimization over a long horizon due to slow thermal dynamics as a nonlinear programming. If the engine air path dynamics and torque control are also included in the OCP, the solution would even be more complicated. Therefore, air path system

Objectives

Real-time engine & aftertreatment control optimization with high fidelity on-board models exercised over a receding horizon

Status

- Engine systems fully characterized
- Aftertreatment system modeling on-going
- Experimental evaluation in progress

Daimler Trucks

Remaining Challenges & Barriers

Summary and Future Work

Responses to Previous Year Reviewer's Comments

SuperTruck 2 Partnerships and Collaborations

Questions?

