

DEVELOPMENT AND VALIDATION OF SIMULATION TOOLS FOR ADVANCED IGNITION SYSTEMS

<u>Riccardo Scarcelli</u> (PI), Vyaas Gururajan, Joohan Kim, Valentino Cruccolini* Argonne National Laboratory

*Visiting student from University of Perugia

DOE Technology Managers: Michael R. Weismiller, Gurpreet Singh

Project ID: ACE084

2019 DOE Vehicle Technologies Office AMR Arlington, VA, June 11, 2019

This presentation does not contain any proprietary, confidential, or otherwise restricted information

OVERVIEW

Timeline

- Project start: FY 2017
- Project end: FY 2019
- Transitioning into the Light-Duty Combustion Consortium (FY19-24)
- Started as modeling/experiments task for the VTO Lab Call FY17
- Re-defined in FY18 as modeling only task
- Combined with ACS075 (PI: Som, ANL) at 2018 VTO AMR

Budget

- Funding in FY17: \$370k
- Funding in FY18: \$400k
- Funding in FY19: \$400k

Barriers

- Limited understanding of advanced ignition mechanisms enabling high-efficiency internal combustion engines
- <u>Limited availability of modeling</u> <u>tools</u> to support the development of advanced ignition systems

Main Partners

- Sandia National Laboratories (SNL)
- Esgee Technologies Inc.
- Convergent Science Inc.
- Transient Plasma Systems (TPS)
- Federal Mogul (FM)
- Michigan Tech, U-Texas, U-Perugia
- USCAR (Ford, GM, FCA)
- Argonne (engine experiments)

RELEVANCE AND OBJECTIVES

Limited understanding/models for advanced ignition concepts

- Challenges for Spark-Ignition (SI) systems and models
 - Boosted, dilute, cold-start operation impacts combustion stability

Strong interest in Low-Temperature Plasma (LTP) ignition

Improved dilution tolerance and efficiency, robust controls

Some advanced ignition technologies nearing production

GOAL: Improve understanding, develop LTP ignition models

Absence of LTP ignition models in engine CFD codes

OEMs develop advanced concepts with Tier I Suppliers (e.g. GBDI)

SI models are not predictive at severe operating conditions

GOAL: Improve formulation & accuracy of SI models

Image: MTU

Image: TPS

Image: BW

- **Pre-Chamber ignition (PC) is back...stronger than ever...**
 - Evaluation of passive/active PC for a wide range of engine platforms
 - Main computational challenge is for combustion modeling
 - Advanced ignition modeling required for large PC stratification/turbulence

GOAL: Improve sub-models for PC ignition & combustion

ace087_bunce_2015_o.pdf

APPROACH

* LESI = Lagrangian-Eulerian Spark-Ignition ** WSR = Well Stirred Reactor

MILESTONES FY19-20

Q1 (12/31/2018)

Evaluate real LTP ignition case with plasma and CFD solvers

Q2 (3/31/2019)

Plasma mechanisms expanded with the addition of relevant chemical species and reactions

{50% Complete}

{100% Complete}

Q3 (6/30/2019)

Expand LTP studies to advanced igniter geometries

{75% Complete}

Q4 (9/30/2019)

LESI model validation extended to different conditions

{25% Complete}

FY2020

- I. Build plasma/fuel reduced mechanism for CFD simulations
- II. Evaluate LTP ignition models at dilute operating conditions
- III. Simulate ignition for advanced compression ignition (ACI) strategies
- IV. Simulate ignition processes at cold-start conditions

LTP solver (VIZGLOW) validated/coupled with CFD (CONVERGE)

- 1. Matched experiments on glow/spark regime transition
- 2. O atom and Temperature validated against experiments (O-TALIF measurement near the anode)
- **3.** VIZGLOW output fed into CONVERGE source input (combination of thermal energy and species)
- 4. Thermal and non-thermal plasma deposition practically simulated in CONVERGE

Experimental data from Isaac Ekoto, SNL

	SIMULATIONS		EXPERIMENTS	
	O (#/m ³)	Temp (K)	O (#/m ³)	Temp (K)
14kV - 1.5bar	0.9E ⁺²⁴	770	1.3E ⁺²⁴	779
19kV - 2.0bar	1.8E ⁺²⁴	938	2.1E ⁺²⁴	1094

Expand CFD modeling capabilities to simulate non-thermal ignition

Real LTP ignition case investigated

- Ignition observed from non-thermal plasma (SNL)
- Clear impact of no. pulses on ignition/quenching
- LTP simulations performed with improved detail of the actual geometry of the two pin electrodes
- Model tuning consistent with previous validation

Argonne 🕰

Time: 64.2 ns

400

100

LTP simulations qualitatively/quantitatively validated against experiments

LTP ignition simulated using CFD engine codes (CONVERGE)

Courtesy of Isaac Ekoto, SNL

0.75 ms

0.25 ms

- Improved source (Energy + O atom) deposition in CONVERGE CFD
- Assumption: Deposition does not change during the entire train of pulses

Apply VIZGLOW output

Increasing [O] by a factor of 10

Evaluate real LTP ignition case with plasma + CFD solvers Quantitative validation \rightarrow Ignition achieved only by boosting [O]

2.25 ms

Pulses end

1.5 ms

Multi-pulse LTP discharge simulated using VIZGLOW

- Main challenge is from the large gap in discharge (10⁻⁷ s) and flow (10⁻⁴ s) time-scales
- Inter-pulse simulations achieved by variable time-step (from 10⁻¹² to 10⁻¹⁰ s). 3 pulses/week

- More thermal/chemical energy will go into the gap because of larger E/N values
- How fast (this process is) depends on fluid mechanics in the after-glow phase

Impact of fluid mechanics on LTP deposition/ignition evaluated

- CONVERGE simulations dissipate the effects of one pulse entirely before next pulse
- VIZGLOW simulations still show "hot spots" nearby the electrodes before next pulse
- Mesh size and flow solver are quite different between the two codes
- Some details (e.g. cathode geometry) not taken into account in CONVERGE

Fluid mechanics has a significant impact on multi-pulse LTP evolution

Validation is challenging due to the lack of data. What solver is right?

Impact of detailed plasma kinetics evaluated in the after-glow

- Initial calculations without fuel, only air chemistry
- Electron density + E/N from VIZGLOW fed into 0-D reactor with detailed kinetics
- Good prediction of ionization wave and O (produced). Off-set in temperature calculations

Account for detailed plasma chemistry and relevant species
 Match VIZGLOW (Big challenge. Very different mechanism size)

Impact of detailed kinetics on LTP ignition evaluated

✓ Priority established for relevant species (NO_X, O₃, Fuel radicals) to be included in plasma/fuel reduced kinetics for engine CFD simulations

SNL groundless barrier discharge igniter (GBDI) simulated

- SNL version has exposed electrode. Plug metal thread and calorimeter walls behave as the missing ground
- Streamers propagating along the dielectric surface.
 Streamers into air aiming at the calorimeter walls

Courtesy of Isaac Ekoto, SNL

- We qualitatively match images from SNL
- Main challenge from the large simulation domain and complex geometry
 - Requires advanced mesh handling
 - Streamers-into-air not very accurate

Expand LTP studies to advanced igniter geometries

LTP properties from GBDI evaluated

- While streamers-into-air calculations are not very accurate, streamers might reach the walls and led to arcing
 - Arcing observed experimentally!
- Streamer emissions might happen from exposed electrode or even from the dielectric surface (if curvature is high)
- Enclosed electrode and low curvature (like the GM version) prevent streamer-into-air propagation and eliminate arcing

The LTP igniter geometry can be optimized to achieve highest efficiency

FM corona igniter simulated

- In collaboration with FM and U-Perugia, Italy
- Similar to a pin-to-plane geometry
- Main technical challenge from the RF* signal. Requires low time-steps for a long time
- Initial demonstration for 10x faster frequency to evaluate streamer evolution
- Very fast streamer propagation from 2nd cycle
 - Expansion likely not captured (flow solver)
 - 10x faster limits expansion further

Courtesy of Federal Mogul (FM) & University of Perugia

Expand LTP studies to advanced igniter geometries
 Validation missing (simulations in progress, challenges identified)

Progress made on conventional/advanced SI modeling

Lagrangian-Eulerian Spark-Ignition (LESI) Model

- Software copyright approved by DOE (SF-18-030)
- ASME 2018 paper selected for journal (GTP-19-1137)
- Interest from industry to have LESI available in CONVERGE
- CRADA with FCA planned for further validation and development

Pre-chamber (PC) ignition in SNL optical vessel

- Experiments led by Isaac Ekoto (SNL, ACE006) with focus on SI/LTP ignition in the PC

Pre-chamber (PC) ignition in ANL metal engine

- Experiments led by Toby Rockstroh (ANL, ACE134) with PC used for multi-mode (SI/ACI) operation
- CFD model complete. Simulations (passive PC) qualitatively match experimental trends

RESPONSE TO REVIEWER COMMENTS

2017 VTO AMR review – Avg Score = 3.28

...the PI may need to collaborate with the LLNL algorithm investigators...

✓ More tight collaboration with LLNL investigators, concerning solver speedup as well as LTP kinetics, is being planned for the FY19-24 Light-Duty Combustion Consortium

...questioned if the proposed work will have an impact in removing barriers to highdilution engines...

✓ The barrier addressed by the project are limited understanding and no predictive models for advanced ignition systems. This barrier impacts engine efficiency and emissions

2018 VTO AMR review – Avg Score = 3.50 (ACS075, Presenter: S. Som)

"...Further development and validation over a variety of conditions are needed by the LESI model.."

✓ This is being planned for the remainder of the fiscal year. SI model improvement will also be one of the focus areas for the FY19-24 Light-Duty Combustion Consortium

"...many sophisticated models are used...It might be possible to devise simpler models to explore the detailed processes such that engineers can use them an effective tool"
 ✓ This is the approach we are initially following for LTP ignition modeling in CFD codes

COLLABORATION AND COORDINATION

Sandia National Laboratories on low-temperature plasma (LTP) and nonconventional ignition diagnostics **DOE Labs**

Michigan Technological University (SI optical diagnostics).

University of Texas at Austin (non-equilibrium plasma modeling) Academia

Esgee Technologies Inc. (non-equilibrium plasma modeling and LTP ignition).

Convergent Science Inc. (SI modeling).

Transient Plasma Systems (nanosecond pulsed discharge systems)

• HPC4Mfg Award to optimize NPD discharge

Interest/input/guidance from OEMs

- FCA, Toyota, etc. reached out about LESI model
- GM, Ford. etc. reached out about LTP/PC ignition

Large Industry

Small Business

New: University of Perugia & Federal Mogul (Corona ignition modeling)

Tier I Supplier

Software Vendors

unition)

REMAINING CHALLENGES AND BARRIERS

* LES = Large Eddy Simulations

Still considerable effort required to bridge the gap between fundamentals of LTP ignition and engine CFD simulations

- Plasma chemistry plays a key role in LTP ignition processes
- Role of fluid dynamics is not secondary
- Large turbulence/chemistry interaction and separation of timescales

Improvement required for thermal plasma ignition as well

- Non-predictive ignition models coupled with low fidelity combustion models
- Combustion stability studies require higher fidelity approach (LES* at least)
- Severe conditions (e.g. cold start) pose an additional challenge to models

Pushing modeling effort beyond conventional boundaries

- Ignition models that predict SI as well as assisted-CI combustion (e.g. O₃ generators)
- Combustion models that capture multiple combustion regimes (e.g. pre-chamber)

PROPOSED FUTURE WORK (FY19-24)

* DNS = Direct Numerical Simulations ** CCV = Cycle-to-cycle variation

Continue to build understanding and models for LTP ignition

- Leverage improved plasma/fuel kinetics \rightarrow Collaboration with LLNL
- More validation at lean and dilute conditions
- Improve fluid mechanics (plasma solvers) and boundary conditions (CFD solvers)

Improve predictions from SI calculations

- Improve and expand state-of-the art models. Couple with thermal plasma solvers.
- Conduct extensive validation. Interact with DNS*. Evaluate cold-start and CCV**.

Expand model application to SACI, LTP-ACI, PC-ACI calculations

- Impact of thermal/non-thermal plasma and turbulent jets on auto-ignition chemistry
- Evaluate coupling between advanced ignition and combustion modeling

Any proposed future work is subject to change based on funding levels

SUMMARY

Development and Validation of Simulation Tools for Advanced Ignition Systems

Relevance

Limited understanding and modeling tools for advanced ignition concepts that have shown potential to improve combustion stability and engine efficiency

Approach

State of the art models expanded for advanced ignition concepts by leveraging high-fidelity plasma simulations and validated against optical diagnostics and engine data

Technical accomplishments (1/2)

- Real LTP ignition case investigated using detailed plasma and engine CFD solvers
- Impact of multi-pulse discharge and induced fluid mechanics on LTP ignition evaluated
- Plasma evolution in the after-glow and impact on ignition processes evaluated with detailed plasma and fuel kinetics

Technical accomplishments (2/2)

- LTP studies expanded to simulate advanced LTP igniter geometries (GBDI, Corona) that are being evaluated by industry
- Research plan defined and simulations initiated for conventional/advanced thermal plasma ignition

Remaining barriers

- Large gap between ignition fundamental and multi-dimensional engine CFD simulations
- Well known technologies (e.g. SI) also need improved models to capture ignition physics
- Scarce modeling efforts on advanced engine strategies leveraging ignition systems

Future work

- Improve understanding & models for LTP ignition
- Continue to develop predictive SI models
- Simulate ignition for advanced engine concepts

BACKUP SLIDES

www.anl.gov

Pin-to-pin (P2P) case setup in VIZGLOW

* Scarcelli, R., et al., 2018 Plasma Sources Sci. Technol.

- O₂-N₂ mechanism, 18 species, 64 reactions*
- Pressure = 1.3 bar, Temp = 343 K
- Gap = 6.23 mm, MIN mesh size = $10 \mu m$
- 80,000 cells total
- Model calibration to match experiments
- Extensive study on real electrode geometry effects
- 15kv and 18kv pulse simulated, no ringing
- Flow is solved (Navier-Stokes equations)

GBDI case setup in **VIZGLOW**

- Pressure = 1.3 bar, Temp = 343 K
- Larger analysis domain (full calorimeter) would lead to much higher cell count than P2P case
- MIN mesh size = 10 μ m along insulator
- Coarse mesh elsewhere (up to 150 μm, limited accuracy for streamers in air)
- 160,000 cells total
- Extensive study on real insulator geometry and electrode protrusion
- Flow is solved (Navier-Stokes equations)

RF corona setup in VIZGLOW

- O2-N2 plasma chemistry for high pressure applications with 18 species: E, O₂, O₂*, O₂a1, O₂b1, O₂+, O₂⁻, O, O⁻, O₄+, O2+N2, N₂, N₂a1, N₂A, N₂B, N₂C, N₂+, N₄+ (<u>common chemistry</u> <u>used in all our VIZGLOW calculations</u> shown here)
- Flow is solved (Navier-Stokes equations)

- 18 mm gap between rounded electrode tip and plane ground
- Mixture: 20.9% O2, 79.1% N2 @ 300 K, 1.3 abs bar
- <u>RF sinusoidal voltage profile applied to</u> <u>the anode</u>; cathode is grounded
- Mixed quad/tri mesh with 10 μm min size
- Quad cells in the center gap
- Total cell count ~107,000

CONVERGE simulations setup

LTP ignition in SNL calorimeter

- RANS modeling (RNG k-ε)
- SAGE solver (well stirred reactor + multi-zone)
 - GRI MECH 3.0
- T = 343K, p = 1.3 bar, φ = 1.0
- Base 2.0 mm, AMR 0.25 mm, Embedding 0.0625 mm
- Total cell count = 350k-550k (increase due to AMR)
- Combined energy/O deposition from VIZGLOW

PC ignition in SNL optical vessel and ANL single-cylinder engine

- RANS modeling (RNG k-ε)
- SAGE solver (well stirred reactor + multi-zone)
 - Aramco Mechanism 1.3 (253 species, 1542 reactions) for C_3H_8
 - Co-Optima mechanism (122 species, 647 reactions) for Alkylate
- T = 500K, p = 5 bar, $\phi = 1.0$ (Sandia vessel)
- 1500 rpm, nIMEP 3.2 bar, $\phi = 1$ (Argonne single-cylinder)
- Base 1.0 mm, AMR 0.5 mm, Embedding 0.125 mm
- Ignition by thermal energy deposition (spherical source, 50 mJ)

Batch reactor detailed chemistry calculations

- CANTERA to calculate thermodynamics and ground state kinetics
- BOLOS for the rates of electron impact reactions
- **libMATH** to evaluate other non-Arrhenius rate forms (like Vib.-Trans. Relaxation)
- SUNDIALS' CVODE for time integration
- BASILISK framework for cylindrical/ spherical shock wave computations

- Full non-equilibrium electron kinetics*
- Pressure relaxation due to gas dynamics
- Heat losses due to diffusion
- Streamer derived electron densities

* Adamovich, et.al., Philosophical Transactions of the Royal Society A 373.2048 (2015).
 * Rasmussen, et al., International Journal of Chemical Kinetics 40, no. 8 (2008): 454-480.
 * Chemical-Kinetic Mechanisms for Combustion Applications (http://combustion.ucsd.edu).

