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Budget
 Funding in FY17: $370k

 Funding in FY18: $400k

 Funding in FY19: $400k

Timeline
 Project start: FY 2017

 Project end: FY 2019

 Transitioning into the Light-Duty 

Combustion Consortium (FY19-24)

 Started as modeling/experiments 

task for the VTO Lab Call FY17 

 Re-defined in FY18 as modeling 

only task

 Combined with ACS075 (PI: Som, 

ANL) at 2018 VTO AMR

Barriers
 Limited understanding of 

advanced ignition mechanisms 

enabling high-efficiency internal 

combustion engines

 Limited availability of modeling 

tools to support the development 

of advanced ignition systems

Main Partners
 Sandia National Laboratories (SNL)

 Esgee Technologies Inc.

 Convergent Science Inc.

 Transient Plasma Systems (TPS)

 Federal Mogul (FM)

 Michigan Tech, U-Texas, U-Perugia

 USCAR (Ford, GM, FCA)

 Argonne (engine experiments)

OVERVIEW
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 Challenges for Spark-Ignition (SI) systems and models

‒ Boosted, dilute, cold-start operation impacts combustion stability

‒ SI models are not predictive at severe operating conditions

GOAL: Improve formulation & accuracy of SI models

 Strong interest in Low-Temperature Plasma (LTP) ignition

‒ OEMs develop advanced concepts with Tier I Suppliers (e.g. GBDI)

‒ Improved dilution tolerance and efficiency, robust controls

‒ Some advanced ignition technologies nearing production

‒ Absence of LTP ignition models in engine CFD codes

GOAL: Improve understanding, develop LTP ignition models

 Pre-Chamber ignition (PC) is back…stronger than ever… 

‒ Evaluation of passive/active PC for a wide range of engine platforms

‒ Main computational challenge is for combustion modeling

‒ Advanced ignition modeling required for large PC stratification/turbulence 

GOAL: Improve sub-models for PC ignition & combustion

Image: MTU

RELEVANCE AND OBJECTIVES

acs121_yun_2018_o.pdf

Image: BW

Image: TPS Image: FM

Limited understanding/models for advanced ignition concepts

ace087_bunce_2015_o.pdf
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APPROACH

LESI* model 

development 

(CONVERGE)

Q: Source 

Evolution

Spark-Ignition
Eulerian Approach

(energy deposition)

Q: Plasma

properties 

and impact 

on ignition

VIZGLOW

0-D kinetics

CONVERGE

LTP Ignition
(energy + species 

deposition)

CONVERGE

PC Ignition
(WSR** or flamelet models 

coupled with more or less 

advanced ignition models )

Q: Ignition & 

Combustion 

Regime

* LESI = Lagrangian-Eulerian Spark-Ignition

** WSR = Well Stirred Reactor
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Isaac Ekoto

(SNL, ACE006)

Toby 

Rockstroh

(ANL, 

ACE134)



5

MILESTONES FY19-20

Q1 (12/31/2018)

Evaluate real LTP ignition case with plasma and CFD solvers 

{100% Complete}

Q2 (3/31/2019)

Plasma mechanisms expanded with the addition of relevant chemical 

species and reactions 

{50% Complete}

Q3 (6/30/2019)

Expand LTP studies to advanced igniter geometries 

{75% Complete}

Q4 (9/30/2019)

LESI model validation extended to different conditions 

{25% Complete}

FY2020
I. Build plasma/fuel reduced mechanism for CFD simulations

II. Evaluate LTP ignition models at dilute operating conditions

III. Simulate ignition for advanced compression ignition (ACI) strategies

IV. Simulate ignition processes at cold-start conditions



ACCOMPLISHMENTS FY18*
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LTP solver (VIZGLOW) validated/coupled with CFD (CONVERGE) 

1. Matched experiments on glow/spark regime 

transition

2. O atom and Temperature validated against 

experiments (O-TALIF measurement near the 

anode)

3. VIZGLOW output fed into CONVERGE source 

input (combination of thermal energy and species)

4. Thermal and non-thermal plasma deposition 

practically simulated in CONVERGE

SIMULATIONS EXPERIMENTS

O (#/m3) Temp (K) O (#/m3) Temp (K)

14kV - 1.5bar 0.9E+24 770 1.3E+24 779

19kV - 2.0bar 1.8E+24 938 2.1E+24 1094

 Expand CFD modeling capabilities to simulate non-thermal ignition

Experimental data from Isaac Ekoto, SNL

* acs075_som_2018_o.pdf



ACCOMPLISHMENTS FY19
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Real LTP ignition case investigated 

Courtesy of Isaac Ekoto, SNL

LTP ignition from P2P geometry into C3H8/air mixture
 = 1.0, Pi = 1.3 bar, Ti = 343 K, VPEAK = 15 kV, PRR* = 10kHz)

 Ignition observed from non-thermal plasma (SNL)

 Clear impact of no. pulses on ignition/quenching

 LTP simulations performed with improved detail 

of the actual geometry of the two pin electrodes

 Model tuning consistent with previous validation 

LTP simulations qualitatively/quantitatively validated against experiments 

LTP properties 

at the end of 

discharge

* PRR = Pulse Repetition Rate



ACCOMPLISHMENTS FY19
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LTP ignition simulated using CFD engine codes (CONVERGE)

 Improved source (Energy 

+ O atom) deposition in 

CONVERGE CFD

 Assumption: Deposition 

does not change during 

the entire train of pulses

 Evaluate real LTP ignition case with plasma + CFD solvers 

 Quantitative validation  Ignition achieved only by boosting [O]

Apply VIZGLOW output

Increasing [O] by a factor of 10

Pulses end
Courtesy of Isaac Ekoto, SNL



ACCOMPLISHMENTS FY19
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Multi-pulse LTP discharge simulated using VIZGLOW

 Main challenge is from the large gap in discharge (10-7 s) and flow (10-4 s) time-scales

 Inter-pulse simulations achieved by variable time-step (from 10-12 to 10-10 s). 3 pulses/week

 More thermal/chemical energy will go into the gap because of larger E/N values

 How fast (this process is) depends on fluid mechanics in the after-glow phase



ACCOMPLISHMENTS FY19
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Impact of fluid mechanics on LTP deposition/ignition evaluated

 CONVERGE simulations dissipate the effects of one pulse entirely before next pulse

 VIZGLOW simulations still show “hot spots” nearby the electrodes before next pulse

 Mesh size and flow solver are quite different between the two codes

 Some details (e.g. cathode geometry) not taken into account in CONVERGE

 Fluid mechanics has a significant impact on multi-pulse LTP evolution

 Validation is challenging due to the lack of data. What solver is right?



ACCOMPLISHMENTS FY19
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Impact of detailed plasma kinetics evaluated in the after-glow

 Initial calculations without fuel, only air chemistry

 Electron density + E/N from VIZGLOW fed into 0-D reactor with detailed kinetics

 Good prediction of ionization wave and O (produced). Off-set in temperature calculations

p1

p2

 Account for detailed plasma chemistry and relevant species

 Match VIZGLOW (Big challenge. Very different mechanism size)

Large gap due to 

very high Temp 

values predicted 

from VIZGLOW.

Surface chemistry 

might play a role

Low O decay 

due to the lack 

of recombination 

chemistry

DT ≈ 3000 K 

DT ≈ 30 K 



ACCOMPLISHMENTS FY19
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Impact of detailed kinetics on LTP ignition evaluated

 Full chemistry accounts for species that are relevant 

to ignition processes, such as NO, O3, etc.

 Fuel chemistry also interacts with plasma chemistry, 

promoting the formation of active fuel radicals

p1

p1

e- + C3H8 => C3H7 + H + e-

Leads to ignition

 Priority established for relevant species (NOX, O3, Fuel radicals) to be 

included in plasma/fuel reduced kinetics for engine CFD simulations

Generally more chemical activity 

in the proximity of the electrodes

p2



ACCOMPLISHMENTS FY19
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SNL groundless barrier discharge igniter (GBDI) simulated

 SNL version has exposed electrode. Plug metal thread 

and calorimeter walls behave as the missing ground

 Streamers propagating along the dielectric surface. 

Streamers into air aiming at the calorimeter walls

Courtesy of Isaac Ekoto, SNL

 Expand LTP studies to advanced igniter geometries

 We qualitatively match images from SNL

 Main challenge from the large simulation 

domain and complex geometry

– Requires advanced mesh handling

– Streamers-into-air not very accurate



ACCOMPLISHMENTS FY19
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LTP properties from GBDI evaluated

 While streamers-into-air calculations are not very accurate, 

streamers might reach the walls and led to arcing

– Arcing observed experimentally!

 Streamer emissions might happen from exposed electrode or 

even from the dielectric surface (if curvature is high)

 Enclosed electrode and low curvature (like the GM version) 

prevent streamer-into-air propagation and eliminate arcing

Highest Field 

between barrier 

and ground

2nd highest Field 

from the exposed 

electrode

Large Field also 

along the 

dielectric, can turn 

into a streamer

The LTP igniter geometry can be optimized to achieve highest efficiency

WALLS

Fully-covered 

electrode reduces

streamer-into-air 

penetration and 

prevents arcing

WALLS



ACCOMPLISHMENTS FY19
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FM corona igniter simulated

 In collaboration with FM and U-Perugia, Italy

 Similar to a pin-to-plane geometry

 Main technical challenge from the RF* signal. 

Requires low time-steps for a long time

 Initial demonstration for 10x faster frequency to 

evaluate streamer evolution

 Very fast streamer propagation from 2nd cycle

– Expansion likely not captured (flow solver)

– 10x faster limits expansion further

Courtesy of 

Federal Mogul (FM) & 

University of Perugia

 Expand LTP studies to advanced igniter geometries

 Validation missing (simulations in progress, challenges identified)

* RF = Radio-Frequency



ACCOMPLISHMENTS FY19
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Progress made on conventional/advanced SI modeling

Lagrangian-Eulerian Spark-Ignition (LESI) Model

 Software copyright approved by DOE (SF-18-030)

 ASME 2018 paper selected for journal (GTP-19-1137)

 Interest from industry to have LESI available in CONVERGE 

 CRADA with FCA planned for further validation and development

Pre-chamber (PC) ignition in SNL optical vessel

 Experiments led by Isaac Ekoto (SNL, ACE006) with focus on 

SI/LTP ignition in the PC

 CFD model complete. Simulations started simultaneously with 

experiments. Parametric studies of T/p/ and location of the spark

Pre-chamber (PC) ignition in ANL metal engine

 Experiments led by Toby Rockstroh (ANL, ACE134) 

with PC used for multi-mode (SI/ACI) operation

 CFD model complete. Simulations (passive PC) 

qualitatively match experimental trends



RESPONSE TO REVIEWER COMMENTS
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2017 VTO AMR review – Avg Score = 3.28

 …the PI may need to collaborate with the LLNL algorithm investigators…

 More tight collaboration with LLNL investigators, concerning solver speedup as well as 

LTP kinetics, is being planned for the FY19-24 Light-Duty Combustion Consortium

 …questioned if the proposed work will have an impact in removing barriers to high-

dilution engines…

 The barrier addressed by the project are limited understanding and no predictive 

models for advanced ignition systems. This barrier impacts engine efficiency and emissions

2018 VTO AMR review – Avg Score = 3.50 (ACS075, Presenter: S. Som)

 “…Further development and validation over a variety of conditions are needed by the 

LESI model..”

 This is being planned for the remainder of the fiscal year. SI model improvement will 

also be one of the focus areas for the FY19-24 Light-Duty Combustion Consortium

 “…many sophisticated models are used…It might be possible to devise simpler models 

to explore the detailed processes such that engineers can use them an effective tool”

 This is the approach we are initially following for LTP ignition modeling in CFD codes



Sandia National Laboratories on low-temperature plasma (LTP) and non-

conventional ignition diagnostics

Michigan Technological University (SI optical diagnostics).

University of Texas at Austin (non-equilibrium plasma modeling)

Esgee Technologies Inc. (non-equilibrium plasma modeling and LTP ignition).

Convergent Science Inc. (SI modeling).

Transient Plasma Systems (nanosecond pulsed discharge systems)

o HPC4Mfg Award to optimize NPD discharge

Interest/input/guidance from OEMs

o FCA, Toyota, etc. reached out about LESI model

o GM, Ford. etc. reached out about LTP/PC ignition

New: University of Perugia & Federal Mogul (Corona ignition modeling)

COLLABORATION AND COORDINATION
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DOE Labs

Software Vendors

Academia

Small Business

Large Industry

Tier I Supplier



REMAINING CHALLENGES AND BARRIERS
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 Still considerable effort required to bridge the gap between 

fundamentals of LTP ignition and engine CFD simulations

– Plasma chemistry plays a key role in LTP ignition processes

– Role of fluid dynamics is not secondary

– Large turbulence/chemistry interaction and separation of timescales

 Improvement required for thermal plasma ignition as well

– Non-predictive ignition models coupled with low fidelity combustion models

– Combustion stability studies require higher fidelity approach (LES* at least)

– Severe conditions (e.g. cold start) pose an additional challenge to models

 Pushing modeling effort beyond conventional boundaries

– Ignition models that predict SI as well as assisted-CI combustion (e.g. O3 generators)

– Combustion models that capture multiple combustion regimes (e.g. pre-chamber)

* LES = Large Eddy Simulations



PROPOSED FUTURE WORK (FY19-24)
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Any proposed future work is subject to change based on funding levels

 Continue to build understanding and models for LTP ignition

– Leverage improved plasma/fuel kinetics  Collaboration with LLNL

– More validation at lean and dilute conditions 

– Improve fluid mechanics (plasma solvers) and boundary conditions (CFD solvers)

 Improve predictions from SI calculations

– Improve and expand state-of-the art models. Couple with thermal plasma solvers.

– Conduct extensive validation. Interact with DNS*. Evaluate cold-start and CCV**.

 Expand model application to SACI, LTP-ACI, PC-ACI calculations

– Impact of thermal/non-thermal plasma and turbulent jets on auto-ignition chemistry

– Evaluate coupling between advanced ignition and combustion modeling

* DNS = Direct Numerical Simulations

** CCV = Cycle-to-cycle variation



SUMMARY
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Relevance

 Limited understanding and modeling tools for 

advanced ignition concepts that have shown 

potential to improve combustion stability and 

engine efficiency

Approach

 State of the art models expanded for 

advanced ignition concepts by leveraging 

high-fidelity plasma simulations and validated 

against optical diagnostics and engine data

Technical accomplishments (1/2)

 Real LTP ignition case investigated using 

detailed plasma and engine CFD solvers

 Impact of multi-pulse discharge and induced 

fluid mechanics on LTP ignition evaluated

 Plasma evolution in the after-glow and impact 

on ignition processes evaluated with detailed 

plasma and fuel kinetics

Technical accomplishments (2/2)

 LTP studies expanded to simulate advanced LTP 

igniter geometries (GBDI, Corona) that are being 

evaluated by industry

 Research plan defined and simulations initiated for 

conventional/advanced thermal plasma ignition

Remaining barriers

 Large gap between ignition fundamental and 

multi-dimensional engine CFD simulations

 Well known technologies (e.g. SI) also need 

improved models to capture ignition physics

 Scarce modeling efforts on advanced engine 

strategies leveraging ignition systems

Future work

 Improve understanding & models for LTP ignition

 Continue to develop predictive SI models

 Simulate ignition for advanced engine concepts

Development and Validation of Simulation Tools for 

Advanced Ignition Systems



www.anl.gov

BACKUP SLIDES
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TECHNICAL BACKUP SLIDES

 O2-N2 mechanism, 18 species, 64 reactions*

 Pressure = 1.3 bar, Temp = 343 K

 Gap = 6.23 mm, MIN mesh size = 10 mm

 80,000 cells total 

 Model calibration to match experiments

 Extensive study on real electrode geometry 

effects

 15kv and 18kv pulse simulated, no ringing

 Flow is solved (Navier-Stokes equations)

Pin-to-pin (P2P) case setup in VIZGLOW

Courtesy of Isaac Ekoto, SNL

* Scarcelli, R., et al., 2018 

Plasma Sources Sci. Technol. 
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TECHNICAL BACKUP SLIDES
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GBDI case setup in VIZGLOW
 Pressure = 1.3 bar, Temp = 343 K

 Larger analysis domain (full calorimeter) 

would lead to much higher cell count than 

P2P case

 MIN mesh size = 10 mm along insulator

 Coarse mesh elsewhere (up to 150 mm, 

limited accuracy for streamers in air)

 160,000 cells total

 Extensive study on real insulator 

geometry and electrode protrusion

 Flow is solved (Navier-Stokes equations)
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RF corona setup in VIZGLOW

 O2-N2 plasma chemistry for high pressure

applications with 18 species: E, O2, O2*, O2a1,

O2b1, O2
+, O2

-, O, O-, O4
+, O2+N2, N2, N2a1,

N2A, N2B, N2C, N2
+, N4

+ (common chemistry

used in all our VIZGLOW calculations shown

here)

 Flow is solved (Navier-Stokes equations)

 18 mm gap between rounded electrode tip

and plane ground

 Mixture: 20.9% O2, 79.1% N2 @ 300 K, 1.3

abs bar

 RF sinusoidal voltage profile applied to

the anode; cathode is grounded

 Mixed quad/tri mesh with 10 mm min size

 Quad cells in the center gap

 Total cell count ~107,000

Cathode

SYMMETRY AXIS

Anode

Courtesy of 

FM and UPerugia

Cathode details

Anode details

TECHNICAL BACKUP SLIDES



26

TECHNICAL BACKUP SLIDES

CONVERGE simulations setup

LTP ignition in SNL calorimeter

 RANS modeling (RNG k-e)

 SAGE solver (well stirred reactor + multi-zone)

– GRI MECH 3.0

 T = 343K, p = 1.3 bar,  = 1.0

 Base 2.0 mm, AMR 0.25 mm, Embedding 0.0625 mm 

 Total cell count = 350k-550k (increase due to AMR)

 Combined energy/O deposition from VIZGLOW

PC ignition in SNL optical vessel and ANL single-cylinder engine

 RANS modeling (RNG k-e)

 SAGE solver (well stirred reactor + multi-zone) 

– Aramco Mechanism 1.3 (253 species, 1542 reactions) for C3H8

– Co-Optima mechanism (122 species, 647 reactions) for Alkylate

 T = 500K, p = 5 bar,  = 1.0 (Sandia vessel)

 1500 rpm, nIMEP 3.2 bar,  =1 (Argonne single-cylinder)

 Base 1.0 mm, AMR 0.5 mm, Embedding 0.125 mm

 Ignition by thermal energy deposition (spherical source, 50 mJ)

O (ppm)

T (K)
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TECHNICAL BACKUP SLIDES

Batch reactor detailed chemistry calculations

Fast de-excitation 

of N2 electronic 

states

Slow de-excitation 

of O2 electronic 

states

Fuel chemistry kicks in (NOx and O3 catalyze ignition)

Shock induced 

pressure 

relaxation

Thermal 

diffusion

 CANTERA to calculate thermodynamics 

and ground state kinetics

 BOLOS for the rates of electron impact 

reactions

 libMATH to evaluate other non-

Arrhenius rate forms (like Vib.-Trans. 

Relaxation)

 SUNDIALS’ CVODE for time integration

 BASILISK framework for cylindrical/ 

spherical shock wave computations

 Full non-equilibrium electron kinetics*

 Pressure relaxation due to gas dynamics

 Heat losses due to diffusion

 Streamer derived electron densities

Properly 

solves the 

ionization 

wave
* Adamovich, et.al., Philosophical Transactions of the Royal Society A 373.2048 (2015).

* Rasmussen, et al., International Journal of Chemical Kinetics 40, no. 8 (2008): 454-480.

* Chemical-Kinetic Mechanisms for Combustion Applications (http://combustion.ucsd.edu).




