

Measurement of Helium Diffusion in Metals

Donald F. Cowgill Sandia National Laboratories Livermore, CA 94550

40th Tritium Focus Group, Albuquerque, NM October 23-25, 2018

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NAOO0352.

Overview

- Helium is generated in tritium exposed materials by beta decay.
- It is insoluble in metals and diffuses to the surface or collects in highpressure bubbles, eventually affecting the materials structural integrity.
- Modeling this process requires knowledge of the effective He diffusion and trapping parameters.
- Previous efforts with He implantation have focused on bubble growth and the onset of blistering.
- Here, a new, "gentle" implantation technique is described where He clustering is reduced. It involves
 - a low energy, short He implantation pulse at low temperature
 - followed by a rapid thermal desorption ramp.
- An analytic expression of desorption behavior yields both diffusion and trapping data.
 - Fickian diffusion from slab (short time limit)
 - SRIM implantation profile
- Results: first experimental data on He diffusion in Ni, Cu, and Pd.

 $1809 \,\mathrm{dfc}$

Experimental System

- Samples, 100 µm foils annealed: large grain
- He energy (0.5-5.0 keV)range = 4-20 nm
- Spot size, 4-6 mm
- Implant pulse (1-100 nC) .1-10 appm He
- Sample evacuation (20 s)
- Rapid He-TDS (1-2 K/s)

The thermal desorption spectrum shows both diffusive behavior and He release from traps

Analytic expression for diffusive desorption

• Diffusion from a plane sheet of half-thickness R (Crank, per Kass*):

$$M_t = 2 (Dt/\pi R^2)^{1/2} \{ 1 + \sum \exp(-nR^2/Dt) \& \operatorname{erfc}(nR/\sqrt{Dt}) \}$$

For small times, the release from one side, $M_t = (Dt/\pi R^2)^{1/2}$

 Crank also shows this solution for constant diffusivity D may be transformed for D(t) by replacing Dt by

$$\tau = \int_0^t D(t') dt'$$

- With a linear ramp $T = T_0 + \beta t$ and $D = D_0 \exp(-E_D/kT)$, $\tau = (D_0kT^2/\beta E_D) \exp(-E_D/kT)$
- Substituting, for large E_D/kT

$$\begin{split} M_t &= (kT^2D_0/\pi\beta R^2E_D)^{1/2} \ exp \ (-E_D/2kT), \qquad \text{proportional to } 1/R \\ \text{or} \\ &\ln(M_t/T) = \frac{1}{2} \ln \left(kD_0/\pi\beta R^2E_D\right) + E_D/2kT, \quad \text{linear with } 1/T \end{split}$$

^{*}W.J. Kass, J. Vac. Sci. Technol. 14 (1977) 518.

R is determined from Implantation Profile

SRIM: 2 keV He implantation into Pd

- For non-interacting He, the cumulative release is the sum of release from layers with R determined by *right* side of implant profile.
- Since $M_t \propto 1/R$, the effective thickness is

$$1/R_{eff} = (1/n) \sum_{n} (1/R_{n})$$

2 keV He on Pd: $R_{eff} = 169 \text{ Å}$

• For a 500 s spectrum, errors from the absence of release from the *left* side of the profile (R<R_{eff}/10) occur during the 20 s evacuation.

Typical fit to plot of Ln (M_t/T) vs 1/T

- Plot is linear over several orders.
 - From slope S, $E_D = 2kS = 0.092 \text{ eV}$
 - From y-intercept I, $D_0 = 2\pi\beta R^2 S \exp(2I)$ $= 2.6 \text{ e-}12 \text{ cm}^2/\text{s}$
- Rapid rise yields $E_T = 0.32 \text{ eV}$

(Pd interstitial-vacancy recombination will eject He from vacancy)

Table of results

Run	E(keV)	β(K/s)	E _D (eV)	D ₀ (cm ² /s)	D _{300K} (cm ² /s)	E _T (eV)
Pd4d	2	2	.101	5.4e-12	1.02e-13	.381
Pd4e	2	2	.092	2.2e-12	0.62e-13	.307
Pd4f	2	2	.139	4.5e-11	2.06e-13	.349
Pd4g	2	1	.125	5.9e-11	1.95e-13	.361
Pd4h	2	1	.119	7.9e-12	0.78e-13	.318
Cu1e	2	2	.135	1.4e-11	0.75e-13	.406
Cu1f	4	2	.122	2.6e-11	2.27e-13	.389
Ni1c	2	2	.247	6.9e-9	4.76e-13	1.06
Ni1d	4	2	.252	4.6e-9	2.65e-13	

Arrhenius plot comparing He diffusivities

- Uncertainty: shift is due to normalization
- Release from traps obscures end of diffusive spectrum.
- Correct by stopping ramp before release from trap.

Summary

An experimental technique is being developed that appears capable of measuring He diffusivities in metals.

- 10^{10} to 10^{11} He atoms are implanted by a short, few keV He ion pulse at low temperature
- The sample chamber is quickly evacuated, then opened to a getterpumped gas analyzer, with some additional He pumping for fidelity of the He desorption behavior
- The sample temperature is rapidly ramped to 400 K, producing
 - (i) interstitial He diffusion from the sample and
 - (ii) escape of He from trapping sites at higher temperatures.
- The desorption spectrum is analyzed with a linear expression describing Fickian diffusion, under short time and $E_{\rm D}/kT > 10$ approximations.
 - The analysis gives both D_0 and E_D .
- He diffusion in Cu, Ni, and Pd is found to be around 10⁻¹³ cm²/s at room temperature, but He trapping differs significantly.

Next Steps

- Reduce uncertainties
 - Energy (background correction)
 - Normalization (stop ramp)
- Lower implant temperature
- Vary implant fluence (clustering, trapping)
- Examine diffusivity in other materials
 - NG, fusion, alloys