

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Advanced Grid Integration

2019 Wind Program Peer Review

Jian Fu

April 30 - May 2, 2019

Wind Office Strategic Priorities

Clean, low-cost wind energy options nationwide

	Land-Based Wind	Offshore Wind	Distributed Wind
Technology Development & Scientific Research	Atmospheric Science & Wind Plant Systems Engineering	Atmospheric Science & Wind Plant Systems Engineering	Atmospheric Science
	Standards and Certification	Standards and Certification	Standards and Certification
	Technology Innovation	Technology Innovation	Technology Innovation
	World Class Testing Facilities	World Class Testing Facilities	
	Tech to Market Commercialization	Tech to Market Commercialization	
	Integrated Systems Design	Integrated Systems Design	
		Offshore Specific R&D	
		Advanced Technology Demo Projects	
Market Acceleration	Advanced Grid Integration	Advanced Grid Integration	Advanced Grid Integration
	Workforce and Education Development	Workforce and Education Development	Workforce and Education Development
&	Stakeholder Engagement	Stakeholder Engagement	Stakeholder Engagement
Deployment	Environmental Research	Environmental Research	
	Siting & Wind Radar Mitigation	Siting & Wind Radar Mitigation	
	Evaluate and Prioritize R&D	Evaluate and Prioritize R&D	Evaluate and Prioritize R&D
Analysis &	Model Development and Maintenance	Model Development and Maintenance	Model Development and Maintenance
Modeling	Techno-economic Analysis	Techno-economic Analysis	Techno-economic Analysis
	Electricity Sector Modeling	Electricity Sector Modeling	Electricity Sector Modeling

Grid Integration

.

Southwest Power Pool

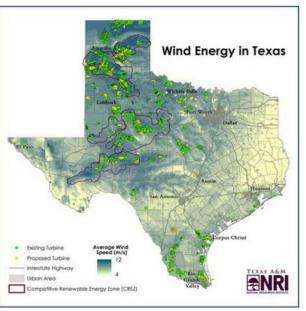
Follow

SPP set a new #wind-penetration record of 66.5% at 2:11 a.m., April 21. Wind served 14,063 MW of the 21,148 MW total load. We also set a #renewable-penetration record of 70% at 2:08 a.m., April 21.

2:36 PM - 22 Apr 2019

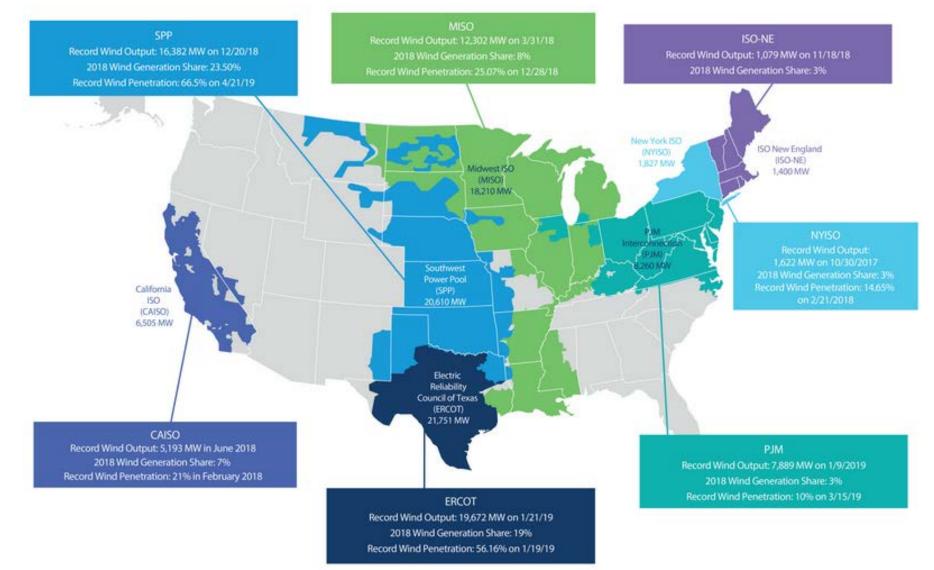
ERCOT Sets New Marks for Wind Production

January 27, 2019


By Tom Kleckner

ERCOT set a new record for wind generation last week, just two days after breaking its mark for penetration.

Wind generators in ERCOT territory – about 90% of Texas – produced 19.7 GW at 7:19 p.m. on Jan. 21, breaking the old mark of 19.2 GW set on Dec. 14, according to market reports. Wind energy accounted for 46.89% of ERCOT's production at the time.


The grid operator also set a new record for wind penetration at 56.16% on Jan. 19. The new mark came at 3:10 a.m., when wind produced 17.4 GW of energy.

The previous high for wind penetration was 54.64%, set Dec. 27.

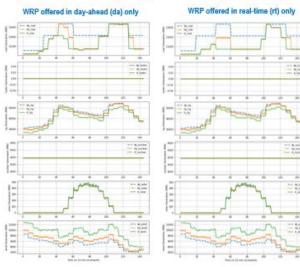
Wind turbine locations in Texas | Matt Crawford, Texas A&M Natural Resources Institute

Grid Integration

https://www.aweablog.org/wp-content/uploads/2019/04/Wind-in-RTOs-1.png

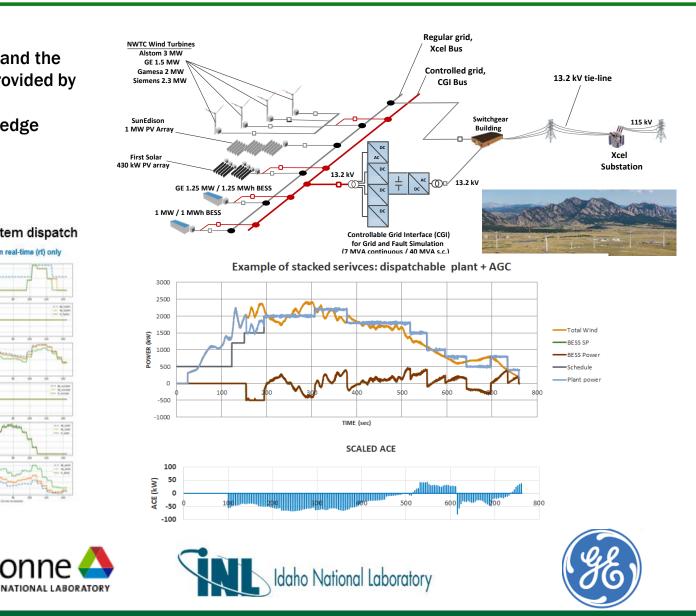
Grid Integration - Motivation

Working to ensure the economic, reliable, and secure operation and planning of the power grid.


Projects were evaluated and selected as part of the DOE Grid Modernization Initiative

Strategic Area: Reliability Service from Wind

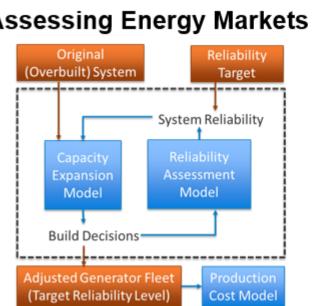
Key Challenges


- Need to better understand the services that can be provided by wind
- Lack of industry knowledge ٠ related to wind turbine capabilities

Impact of wind ramping product on system dispatch

 \bigcirc

Transforming ENERGY

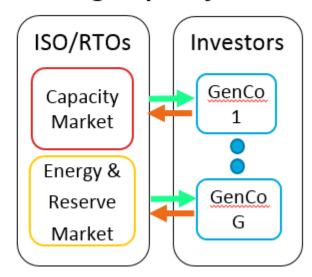

Argonne

Strategic Area: Electricity Market Impact

Key Challenges

ONR

- Wind plants' low marginal costs impact electricity markets
- **Current electric market** • designs may be compensate wind (and other generators) for all the services they provide



Assessing Capacity Markets

Staff Report to the Secretary on

Electricity Markets and Reliability

August 2017

Assessing Energy Markets

Strategic Area: Infrastructure Development and Utilization

Key Challenges

- Information is needed on where new transmission infrastructure is needed to facilitate wind development
- Large amounts of existing transmission infrastructure is currently under-utilized

What gets built

SCENARIOS

How is rooftop

PV adopted?

and where?

SCENARIO CREATION MODELS

CAPACITY

MODEL:

EXPANSION

neration buildou

DISTRIBUTED

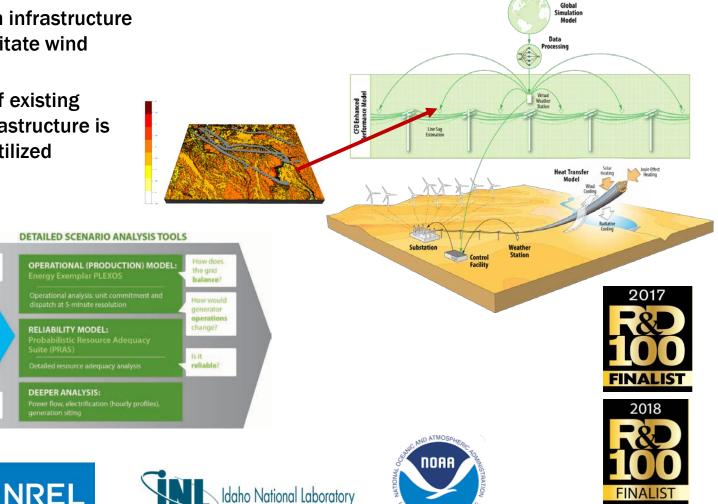
GENERATION

Behind-the-meter

MODEL:

buildout

DATA


wate

solar

therma

power

system

Transformina ENERGY

Grid Integration: Key Projects Over Time

IEA Task 25 and Stakeholder Outreach through UVIG/ESIG

Development of Wind Based Dynamic Line Rating

Incorporation of Forecasting into DLR

Electricity Market Evaluation					
'12	'13	'14	'15	'16	'17
	WWSIS Phas	se 3, ERGIS Large-s	scale Integration Studies	s NARIS	
	Active Pc	ower Controls		Evaluation of all E Serv	-

Grid Integration: Future Priorities (FY19 and beyond)

Strategic Area	Future Priorities		
Beyond Batteries	 Optimize the provision of Essential Reliability Services (ERS) from wind power plants (coordinated with A2e) Develop hybrid energy systems which combine wind with other technologies (H2, Solar, etc.) potentially utilizing the updated Flat Irons facility Further develop and refine means to provide system flexibility 		
Cyber Security	 Understanding of the current state of the art in cyber security from a wind energy perspective Develop wind energy specific cyber security strategies to identify, protect, detect, and mitigate cyber attacks 		
Technical Assistance/Institutional Support	 Continue sharing of technical results related to wind energy research and development with outside organizations such as utilities, ISO/RTOs, the international research community and other interested parties 		

Grid Integration: Strategic Approach

Strategic Area	Challenges	Goals	Approach
Reliability Services From Wind	Need to better understand the services that can be provided by wind	Improve the base level understanding of the suite of reliability services wind turbines are capable of providing	 Test the suite of commercially available reliability services Verify that capabilities operate as advertised Reduce operation and maintenance costs through
	Lack of industry knowledge related to wind turbine capabilities	Provide publicly available information documenting capabilities	 ancillary services provided Publish results in a public format without vendor specifics
Electricity Market	Wind plants' low marginal costs impact electricity markets	Better understand the impact of low marginal cost generation on markets	Perform large-scale analysis of market operation with large amounts of variable generation
Impacts	Current electric market designs may be compensate wind (and other generators) for all the services they provide	Evaluate how reliability services are priced	 Compare different pricing mechanisms under different resource adequacy levels
Infrastructure development and	Information is needed on where new transmission infrastructure is needed to facilitate wind development	Understand how improved transmission planning can assist wind development	 Perform large-scale integration analysis to understand where new transmission is needed
utilization	Large amounts of existing transmission infrastructure is currently under-utilized	Improve the understanding of how wind-based dynamic line rating can unlock transmission capacity	 Expand on past efforts to develop dynamic line ratings and incorporate ratings forecasting