

Office of **ENERGY EFFICIENCY & RENEWABLE ENERGY**

Small Business Vouchers Project ID #T19

Josh Paquette, Brandon Ennis, and Jon Berg

Sandia National Laboratories

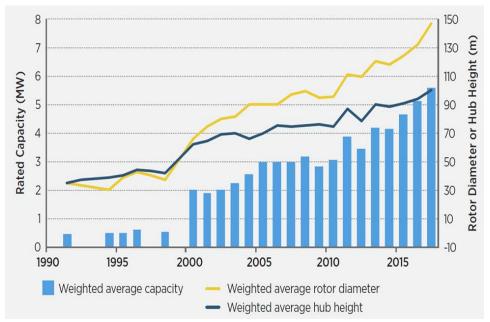
laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

FY17-FY18 Wind Office Project Organization

"Enabling Wind Energy Options Nationwide" **Technology Development** Market Acceleration & Deployment Stakeholder Engagement, Workforce Atmosphere to Electrons **Development, and Human Use Considerations Offshore Wind Environmental Research Distributed Wind** Grid Integration **Testing Infrastructure Regulatory and Siting** Standards Support and International Engagement Advanced Components, Reliability, and Manufacturing

Analysis and Modeling (cross-cutting)

Project Overview


T19: Small Business Vouchers

Project Summary	Project Attributes
 SkySpecs: Evaluate advanced drone-deployed nondestructive inspection methods. Micron Optics: Demonstrate wind turbine fiber-optic data acquisition in real-world operating environment. GroupNIRE: Develop remote grid services controller utilizing rotor inertia. 	Project Principal Investigator(s)
	Ray Ely and Josh Paquette (SkySpecs) Jon White and Brandon Ennis (Micron) David Schoenwald and Jon Berg (Group NIRE)
	DOE Lead Michael Derby
Project Objective & Impact	Project Partners/Subs
 National lab staff working with U.S. small businesses to advance product offerings by transfer of technology and knowledge. 	SkySpecs Micron Optics Group NIRE
	Project Duration
	1 year

Technical Merit and Relevance

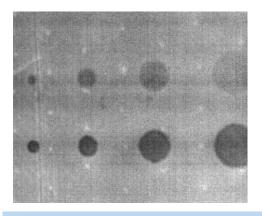
- The Wind Industry has a growing need for operations and maintenance, including inspections and repairs
 - Wind Energy market sharing continues to grow
 - Average rotor diameters, and associated blade costs, have increased
 - Off-shore wind creates new maintenance challenges
 - Many blades are reaching their designed 20-year lifetime

U.S. Department of Energy. "Wind Vision: A New Era for Wind Power in the United States," DOE/GO-102015-4557, April 2015.

Current inspection practices are limited

- Mostly ground-based visual inspection (i.e., cameras on tripods)
- SkySpecs has developed drone-based visual inspection systems
- A need exists for fast and reliable surface and subsurface (i.e., nondestructive) inspection systems, in order to identify and repair damage before the damage propagates, resulting in more costly repairs

Approach and Methodology


- Performed an extensive trade study to identify potential inspection methods
- Selected the thermography inspection method using miniature infrared cameras
 - Small and lightweight (fits on SkySpecs's existing drone and gimbal)
 - Inspections can be performed at a distance from the blade which mitigated potential drone/wind blade control and collision concerns
 - Proven history of inspecting fiberglass and carbon fiber structures
- Evaluated concepts for thermal stimulus and selected solar radiation (i.e., sun/shade)
- Demonstrated thermal stimulus concept works in a benchtop setting

Solar Radiation Thermal Stimulus

FLIR IR Camera (15 g) (320 X 256 pixels)

Thermal Stimulus Benchtop Demonstration

Accomplishments and Progress

- Demonstrated a drone-deployed thermography system can detect find flaws approx. 0.25" deep during benchtop testing
- Developed software for processing the raw infrared camera data
- Performed hardware and software integration on SkySpecs drone platform
- Conducted initial field testing with SkySpecs

Thermography System Integration

Initial Field Testing

Communication, Coordination, and Commercialization

- Released SAND report SAND2018-3116 Development and Evaluation of a Drone-Deployed Wind Turbine Blade Nondestructive Inspection System
- Presented findings at 2018 Sandia Wind Blade Workshop
- Conducted follow-on discussions with SkySpecs about integrating the technology into their business model
 - More customers have begun asking about IR inspections
 - Some financial challenges due to the extra inspection time required

Micron Optics

Technical Merit and Relevance

- Wind turbine control systems would benefit from active load measurement to inform control decisions
- Requires robust data acquisition and reliable sensors
- The performance of Micron Optics fiber optic strain sensors paired with the Hyperion interrogator can be validated at SWiFT

cRIO Controller

Approach and Methodology

- Install Micron Optics fiber optic interrogation system, Hyperion, at SWiFT
- Utilize the system during an experimental campaign
- Develop operational calibration method for wind turbine loads from strain gages

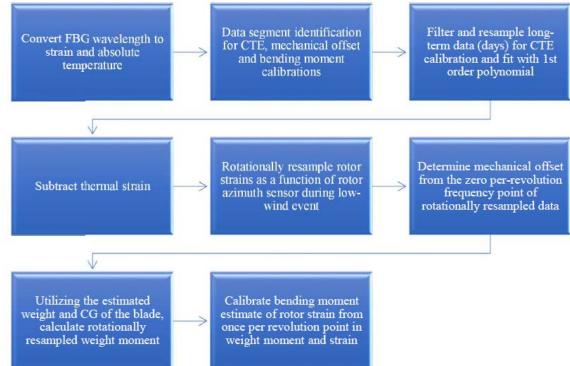
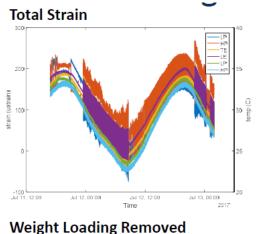
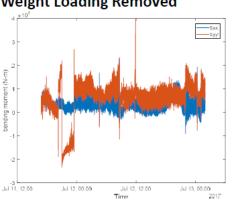
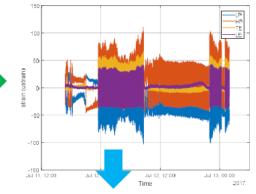
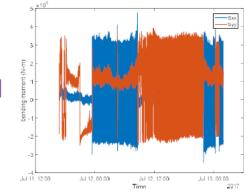




Figure 3. Strain data correction and calibration flow chart.

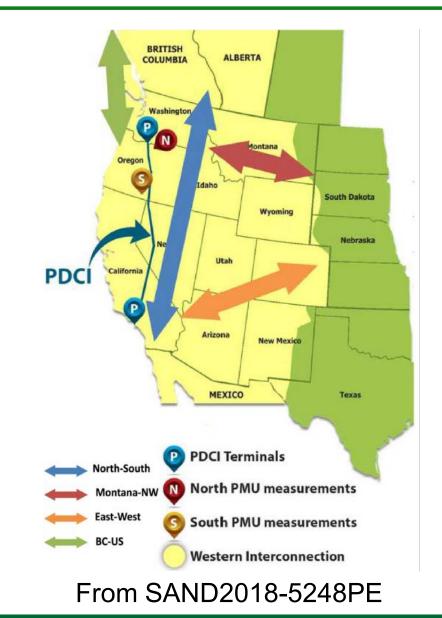

Accomplishments and Progress

- Data acquisition of operational strain gage measurement during a test campaign at SWiFT
- Operational calibration method developed and assessed to perform accurately



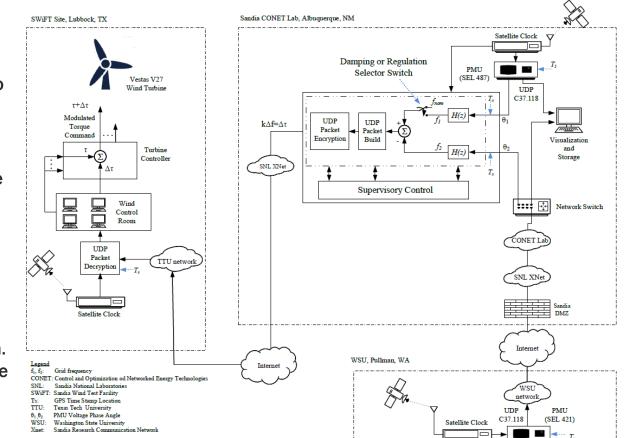
Thermal and Offset Compensated

Calibrated into Bending Moment


Communication, Coordination, and Commercialization

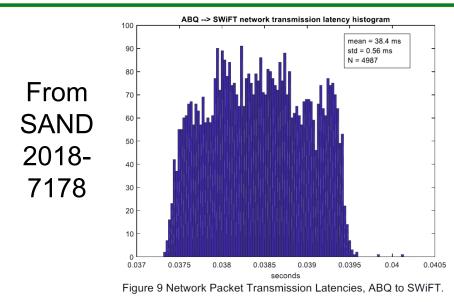
- Work resulted in summary report delivered to Micron Optics on the blade load calibration process
- Work resulted in direct publication of calibration methodology and data analysis of fiber optic strain from the Wake Steering experiment at SWiFT
 - "Estimation of Rotor Loads Due to Wake Steering," AIAA SciTech Conference
- Calibration of strain sensors was used in two international, peer-reviewed publications

GroupNIRE


Technical Merit & Relevance

- Wind energy displaces synchronous generation
- Concern about decline of several grid-quality services inherent to synchronous generation
- Wind turbines have high potential to contribute to grid services through inertial energy storage in the rotor
- Control systems to utilize this require further development
- Build upon prior work which used power modulation to provide damping of oscillation in the US Western Interconnection

Approach and Methodology


- 1. Establish controller in Sandia CONET* lab with necessary feedback control algorithms
- 2. Test power modulation on SWiFT wind turbine emulator to verify safe operation
- 3. Establish network connectivity between SWiFT and CONET, characterize network quality (latencies, corrupted data, time stamps), and asses real-time feedback control performance.
- 4. Obtain streaming PMU data from two geographicallyseparated locations.
- 5. Determine system oscillatory mode(s) of interest and create feedback control test plan for wind turbine power modulation.
- 6. Obtain streaming SWiFT turbine data of power and time-ofarrival of CONET control commands.
- 7. Test and monitor feedback control of wind turbine power modulation

From SAND2018-7178

*Control and Optimization of Networked Energy Technologies

Accomplishments and Progress

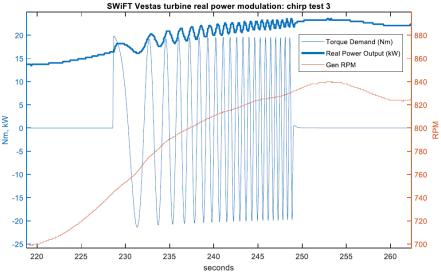


Figure 12 Chirp Test (0.1 To 2Hz) With T = 0.125 And 20Nm Peak Modulation.

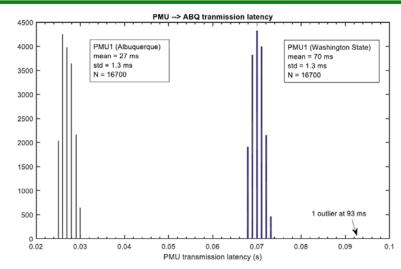


Figure 10 Network packet transmission latencies, PMUs to ABQ.

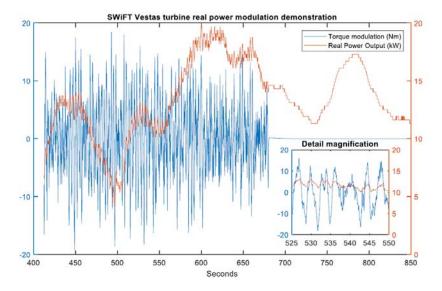


Figure 14 Torque Modulation (Received at the Turbine Nacelle) and Power Output.

Communication, Coordination, and Commercialization

- Discussed the possibility of commercialization with wind turbine manufacturers
- Interest in offering wind turbines with grid service capability
- Power purchase agreements often do not incentivize wind turbine operators to provide grid services
- Sandia is continuing to explore communication and commercialization strategies