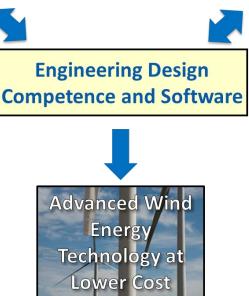


Office of ENERGY EFFICIENCY & RENEWABLE ENERGY



Multi-Physics Model Validation and Uncertainty Quantification

Project ID #T28

Jason Jonkman

NREL

FY17-FY18 Wind Office Project Organization

"Enabling Wind Energy Options Nationwide" Market Acceleration & Deployment Technology Development Stakeholder Engagement, Workforce Atmosphere to Electrons Development, and Human Use Considerations **Offshore Wind Environmental Research Distributed Wind Grid Integration Testing Infrastructure Regulatory and Siting** Standards Support and International Engagement Advanced Components, Reliability, and Manufacturing

Analysis and Modeling (cross-cutting)

Project Overview

T28: Multi-Physics Model Validation and Uncertainty Quantification

Project Summary

 Enable the development of advanced wind-plant technology by leveraging knowledge, data, and highfidelity modeling (HFM) results from the broader Atmosphere to Electrons (A2e) initiative to verify and validate (V&V) and improve physics-based engineering tools at both the turbine and plant levels

Project Objective and Impact

- Systematically V&V physics-based engineering tools by comparisons to HFM and experimental data to quantitively understand their applicability, accuracy, and uncertainties
- Improve the physics of engineering tools to expand the tools' applicability where limitations hinder technology advancement
- Engage in international V&V collaboratives among research laboratories, academia, and industry to further advance engineering models

Project Attributes

Project Principal Investigator(s)

PI (NREL): Jason Jonkman Other (NREL): Paula Doubrawa, Amy Robertson, Kelsey Shaler

DOE Lead

Alana Duerr

Project Partners/Subs

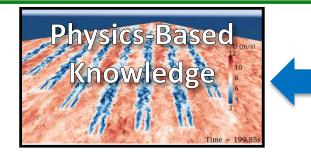
IEA Wind Task 29 Aerodynamics IEA Wind Task 31 WakeBench DNV GL JIP on "Validation of Turbulence Models"

Project Duration

October 2016-September 2018

Technical Merit and Relevance

Why?


Lower wind cost of energy requires technology advancement through improved engineering capability founded on physics.

What?

Improved physics-based engineering design competence and software needed to advance wind energy technology.

How?

Use the knowledge, data, and results from the broader A2e initiative to improve physicsbased engineering design competence and software collaboratively with the wind energy community.

Engineering Design Competence and Software

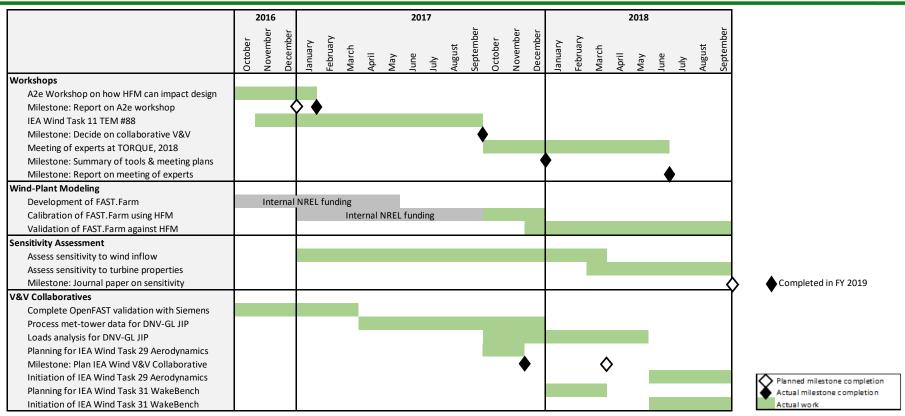
Approach and Methodology

<u>Workshops</u>: Host workshops to plan out how A2e can improve wind-industry capability and technology through international collaboration.

<u>Wind-Plant Modeling</u>: Support the development and V&V of the next generation of mid-fidelity wind-plant engineering tools that have the ability to model the relevant physics of wind plants and are needed to develop next generation wind-plant technologies.

<u>Sensitivity Assessment</u>: Understand the effect of uncertainty in input parameters to engineering models of wind turbines and wind plants on modeling results.

<u>V&V Collaboratives</u>: Engage in V&V collaboratives—to not only validate and improve A2e-developed tools—but to improve other tools used within the wind industry.



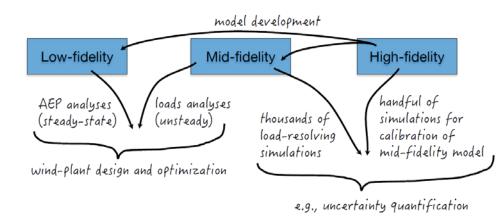
Theory

Engineering

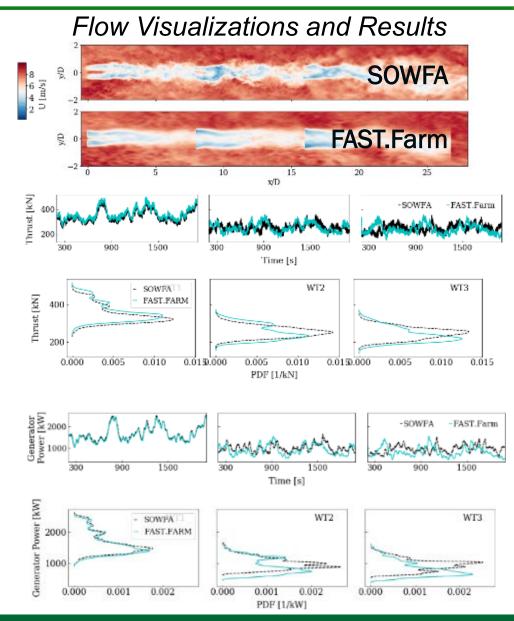
Tools

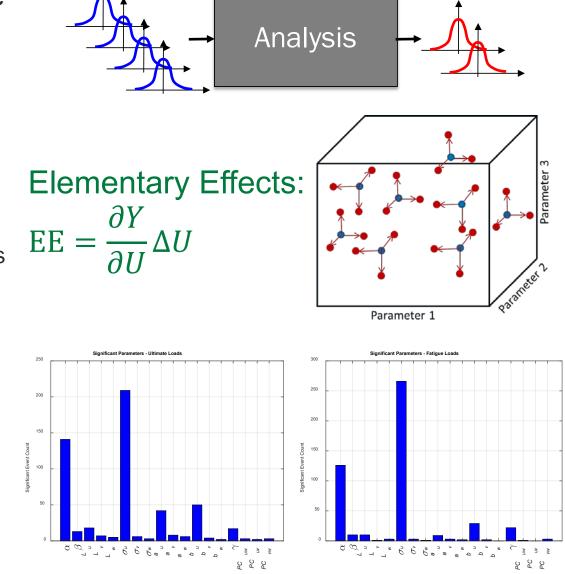
Test Data

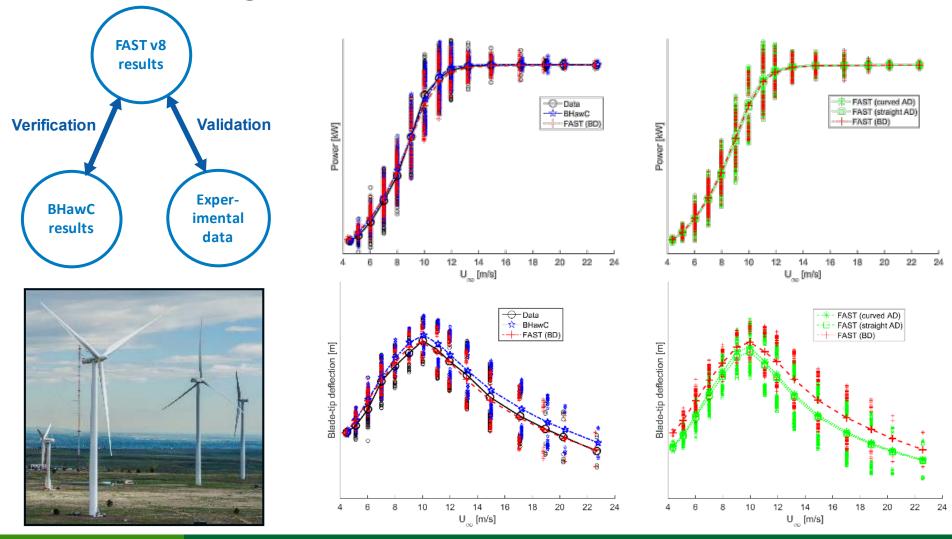
IEA = International Energy Agency | JIP = joint industry project | NREL = National Renewable Energy Laboratory | TEM = topical experts meeting


Milestones

- All but two milestones were completed on time or ahead of schedule
- Fiscal Year (FY) 2017 Q1 milestone completed one-month late to ensure proper participation at A2e workshop
- FY 2018 Q4 milestone completed one-quarter late due to the project complexity
- Go/No-Go Decision Points
 - FY 2017: Should an IEA Wind V&V Collaborative on rotor aero-elastics move forward? Go


- Hosted three workshops to plan out how A2e can improve wind-industry capability and technology through international collaboration:
 - A2e workshop on how investment in HFM and their V&V can connect to improvement of wind-industry-wide design capability and technology
 - IEA Wind Task 11 Topical Experts Meeting (TEM) #88 on three-way V&V between data, HFM, and engineering tools in areas of windplant aerodynamics, rotor aeroelastics, and offshore support structures
 - Meeting of experts on "Mid-Fidelity Wind-Plant Models" at TORQUE, 2018

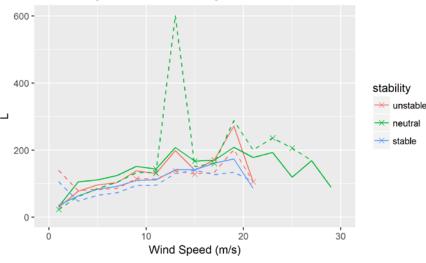

Photo from IEA Wind Task 11 TEM #88

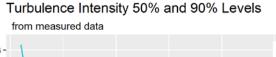

- Completed development, calibration, and validation of FAST.Farm:
 - Originated under internal NREL funding
 - New multi-physics engineering tool captures relevant physics for accurate prediction of power performance and loads, but maintains computational speed to enable loads analysis
 - Developed calibration procedure to adjust tunable model parameters of FAST.Farm to match results of HFM Simulator fOr Wind Farm Applications (SOWFA)
 - Validated FAST.Farm against the SOWFA to highlight where FAST.Farm functions well and where potential improvements could be needed

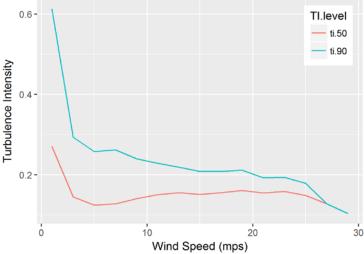
- Assessed sensitivity of aero-elastic modeling to identify inputs with high variability/uncertainty that are most influential on loads and power:
 - Sensitivity to wind inflow (profile, spectra, coherence, correlations)
 - Sensitivity to turbine properties (aerodynamic coefficients, mass, stiffness, damping, control)
- Understanding effects of input uncertainty is critical to help establish error bars on model predictions in validation efforts and to inform future probabilistic design processes and sitesuitability analyses

 Completed V&V of OpenFAST (previously known as FAST) against experimental data and modeling results from the Siemens 2.3-MW turbine

 Completed DNV-GL Joint Industry Project (JIP) on "validation of turbulence models"


• **Objective:** Quantify turbulence properties at the heights and scales of modern utility-scale turbines and evaluate how various atmospheric turbulence properties impact turbine design

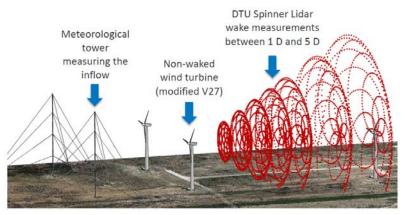

• Activities:


- Processed met-tower data to quantify turbulence properties from a suite of datasets
- Investigated sensitivity of turbine loads to turbulence model parameters

Mann L parameter - NREL M5 Tower

Dashed == log fit X == fit did not converge



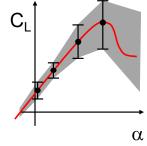


Initiated IEA Wind Task 29 Aerodynamics:

- Led by ECN part of TNO (G. Schepers) and
 Technical University of Denmark (DTU) (H. Madsen)
- Objective: Exploit data from the Danish DanAero field experiment of NM80 2-MW wind turbine at Tjaereborg to validate and improve turbine aeroelastic models (both engineering and HFM)
- Participating using OpenFAST
- Initiated IEA Wind Task 31 WakeBench Phase 3:
 - Led by NREL and Sandia National Laboratory (SNL)
 - Objective: Exploit data from the Scaled Wind Farm Technology (SWiFT) facility field experiment to validate and improve simulations of wind-turbine wakes (both engineering and HFM) under different atmospheric conditions (neutral, unstable, stable)
 - Participating using FAST.Farm

Communication, Coordination, and Commercialization

- Deliverables:
 - Wind turbine and wind plant engineering tools
 - V&V results published in conferences and journals
- Customers:
 - U.S. Department of Energy projects involving HFM V&V and design applications
 - External research laboratories, academia, and industry who apply the tools directly or use to V&V internal tools
- Workshops and V&V Collaboratives:
 - Active engagement with wind-energy designers, consultants, developers, and certification bodies
 - IEA Wind Tasks 29 and 31
 - DNV-GL JIP
- Several related externally funded industry projects:
 - Envision Energy, Equinor, Vestas, Google X / Makani, etc.


Software Downloads	Workshops	Journal Articles	Conference Papers	Other Reports
10,000+ per year	3	4	5	5

for simulation from measurementsU.S. DEPARTMENT OF ENERGYOFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

Upcoming Project Activities

- Continue to advance engineering design capabilities needed to design larger and more flexible wind turbines and innovative concepts in the wind-plant context
- Wind-Plant Modeling:
 - Assess the sensitivity of FAST.Farm to inflow generation technique and discretization
 - Validate FAST.Farm against HFM and data from Lillgrund
 - Publicly release FAST.Farm
- Sensitivity Assessment:
 - Complete the turbine property assessment
 - Inform A2e-HFM regarding most sensitive parameters
 - Assess sensitivity to wind inflow on loads of downstream turbines in a wind plant
- V&V Collaboratives:
 - V&V using DanAero data in IEA Wind Task 29
 - V&V using SWiFT data in IEA Wind Task 31
 - Initiate new DNV-JL JIP on deriving wind data for simulation from measurements

