

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Fundamental heat transfer physics of rotating heat exchangers and practical realization of non-vapor compression refrigeration

Sandia National Laboratories

Wayne L. Staats, PhD (PI); Rainer Dahms, PhD; Jeff Koplow, PhD wstaats@sandia.gov

Project Summary

Timeline:

Start date: October 1, 2018 (early stage) Planned end date: September 30, 2021

Key Milestones

Project Milestone (M8): Demonstrate operation of rotating IR camera

Go/No-Go Decision Point 1 (M12): Demonstrate agreement between computational model and experimental results **Go/No-Go Decision Point 2 (M24):** Demonstrate at least 1 RHX design that exceeds thermal performance of baseline RHX design.

Project Milestone (M36): Demonstrate TRL 4 RHX-based thermoelectric refrigerator having a COP within 10% of a VCC refrigerator.

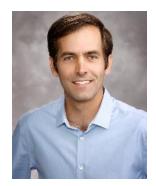
Budget:

Total Project \$ to Date:

- DOE: \$450k (FY19)
- Cost Share: N/A (FFRDC)

Total Project \$:

- DOE: \$1,350k
- Cost Share: N/A (FFRDC)


Key Partners: TBD

Year 1	Complete experimental setup and design hybrid DNS- LES CFD framework
Year 2	Develop high-performance RHX designs and publish a design methodology for RHX technology Develop fundamental understanding of heat transfer in rotating heat exchangers and identify hierarchy of mechanisms
Year 3	Demonstrate a high-COP RHX-based thermoelectric refrigerator, developed to TRL 4

Project Outcome:

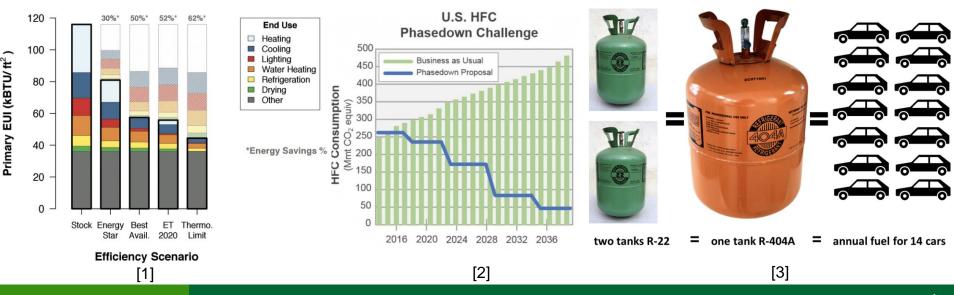
- Conduct a combined experimental (rotating IR thermography boundary layer imaging) and computational (hybrid LES-DNS simulation with relevant boundary layer physics) campaign to uncover RHX heat transfer enhancement mechanisms.
- Based on this understanding, develop optimized RHX designs and systematic framework for applying RHX technology to practical applications.
- Use optimized RHX design to demonstrate high-COP, cost-effective thermoelectric refrigeration, which eliminates high-GWP refrigerants without any efficiency compromise. Develop TRL 4 prototype with the intent to stimulate further R&D in the area of non-vapor compression heat pump technology.

Team

Wayne Staats, PhD (PI), Sandia National Laboratories

- Heat transfer measurements, thermoelectric system
 design
- Background in thermal-fluids engineering, active convection enhancement, RHX design

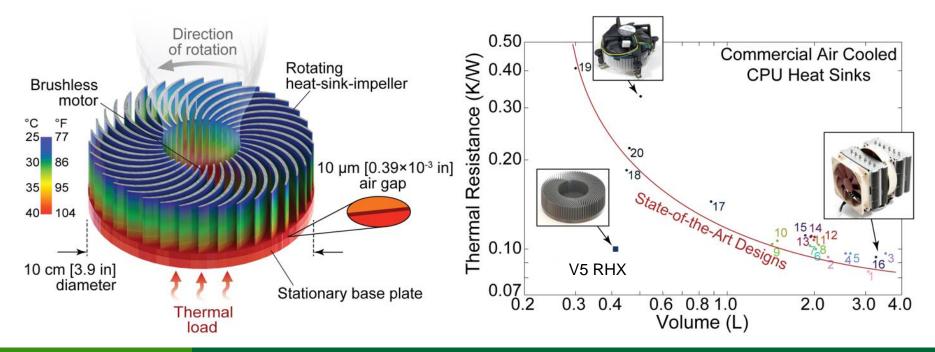
Rainer Dahms, PhD, Sandia National Laboratories


- Computational modeling
- Background in combustion modeling, multi-scale simulation, advanced multiphysics CFD

Jeff Koplow, PhD, Sandia National Laboratories

- Thermoelectric system design, electrical engineering
- Background in RHX development (inventor), power electronics, tech transfer and commercialization, multidisciplinary innovation

Challenge


- Heat exchangers (HXs) affect the performance and energy use of many building technologies
- Non-vapor compression (non-VCC) refrigeration is not currently competitive with VCC refrigeration due to HX performance limitations
- Improved HX performance contributes directly to BTO goals
 - Develop cost-effective technologies to reducing a building's energy use per square foot by 45% by 2030
 - Road to "Low": high-GWP refrigerant phasedown (HX performance gains can enable non-VCC refrigeration technology)

Residential Energy (Single Family, All Regions)

Challenge

- Rotating heat exchangers (RHXs) represent a new lever to attack the HX performance optimization problem
- RHXs offer significant performance improvements for some applications, especially when cooling a solid (e.g. a semiconductor)
 - Up to 10x volume reduction, low power consumption, intrinsic fouling resistance, quiet operation
 - Building technology applications: non-VCC refrigeration, solid-state lighting cooling, appliance thermal management, and rooftop solar PV inverter thermal management

Challenge

Mean dimensionless heat flux

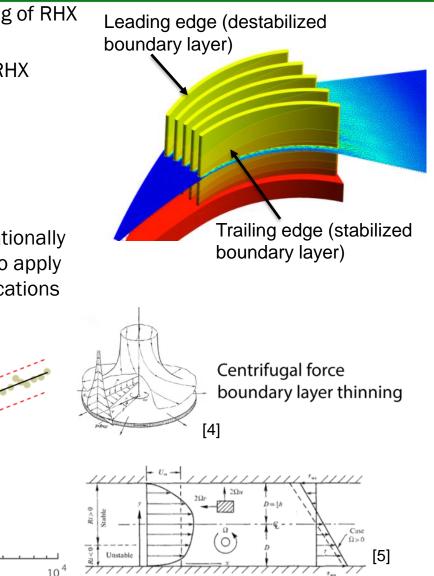
 10^{2}

- In past work we developed an empirical understanding of RHX
 performance
- We seek to develop a mechanistic understanding of RHX performance and apply it to non-VCC refrigeration
- Three hypothesized enhancement mechanisms
 - Centrifugal force boundary layer thinning
 - Direct wall-relative-velocity increase

v4, D=101 v5, D=102 v5 int, D=102 v6, D=101

/5, D=203 /5, D=140

v6, D=152

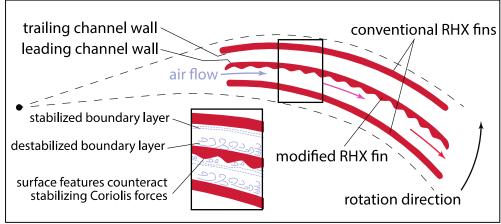

0.78

-30%

Φ=0.025*Re

10

- Coriolis force boundary layer destabilization
- With a mechanistic understanding, we can develop rationally optimized RHX designs and a systematic framework to apply RHX technology to practical building technology applications

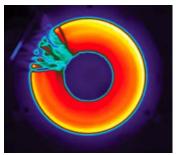

Coriolis force boundary layer destabilization

 10^{3}

Reynolds number at channel entry

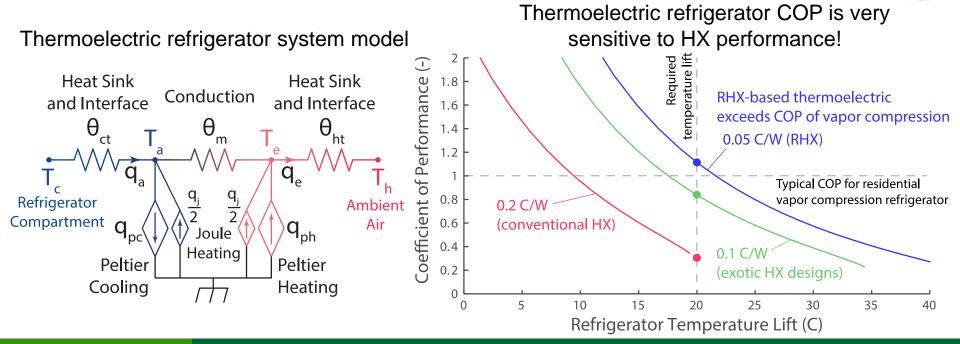
Approach

- Combine experimental and computational methods
 - Rotating infrared (IR) thermography to directly probe local boundary layer behavior and wall heat transfer
 - Hybrid Large Eddy Simulation (LES) / Direct Numerical Simulation (DNS) computational study
 - Develop fundamental understanding of physical heat transfer enhancement mechanism
- Develop new RHX designs and design methodology
- Apply optimized RHX design to non-VCC refrigeration
 - Develop TRL 4 prototype refrigeration system


Understanding enhancement mechanism can reveal effective performance improvements

Example: thin printed circuit board with heater traces

...viewed with compact IR camera


...yields IR image (temperature)
 → reveals local heat transfer coefficient

[6]

Impact

- Understanding the physical mechanisms of RHX heat transfer will reveal the full potential of the technology
- The design tools developed in this project will make RHX technology more accessible to thermal engineers
 - Contributes to BTO ET's goal of reducing building energy use per square foot by 45% by 2030
- High-performance RHX designs enable high-COP, cost-effective thermoelectric residential refrigerators, accelerating phasedown of high-GWP refrigerant use

Progress

- Project started in October 2018
- Hybrid LES-DNS flow simulation framework demonstrated
 - Transient simulation of full RHX completed to establish high-fidelity boundary conditions for single channel
 - Boundary layer refinement parameter selected
 - Initial high-fidelity results demonstrated and confirmed to have qualitatively consistent flow behavior
- Design of experimental apparatus completed, fabrication currently underway
 - Conducted literature review of thermographic measurement techniques
 - Selected infrared camera and data acquisition system
 - Rotational platform under construction

Stakeholder Engagement

- Project is in early stage (started in October 2018)
- Key stakeholders include: refrigerator OEMs, thermoelectric device OEMs, research personnel in the field of advanced heat sink design, and DOE personnel responsible for strategic road-mapping and budget allocation on programs related to thermal management, heat pumps, and building efficiency
- Plan to engage key stakeholders:
 - Year 1: engage Tony Bouza (conduct base research)
 - Year 2 and 3: focus on path forward to engage appropriate OEMs, participate in conferences to share results (e.g. ASME ITherm)
 - Ongoing: assess market and literature to ensure relevance
 - Future (TBD): develop commercialization strategy

Remaining Project Work

Year	Task	Description			
1	Task 1: Design experimental apparatus and characterize local heat transfer (M1-M18)	Design experimental apparatus to accurately determine the local heat transfer characteristics under the range of conditions encountered in RHXs			
	Project Milestone (M8): Demonstrate operation of rotating IR camera system and make measurements on a test object.				
	Task 2: Conduct targeted computational study of fundamental RHX heat transfer (M1-M18)	 Test the boundary conditions and setup, assess results by comparison to experiments Test the dynamic subgrid-scale model to ensure smooth transition between LES and DNS Perform simulation runs with increasing fidelity and validate against experiments Analyze and interpret results for novel insights into physical mechanisms 			
	Go/No-Go Decision Point 1 (M12): Demonstrate that results of computational model agree with average flow and heat transfer measurements of baseline RHX designs under various operating conditions.				
2	Task 3: Develop high-performance RHX designs and design methodology (M15-M24)	 Develop high-performance RHX designs that exceed the heat transfer performance of the baseline design and publish a design methodology for RHX technology Develop fundamental understanding of heat transfer in rotating heat exchangers and identify hierarchy of mechanisms, resulting in a correlation for the local heat transfer coefficient 			
	Go/No-Go Decision Point 2 (M24): Demonstrate at least 1 RHX design that exceeds thermal performance of baseline RHX design.				
3	Task 4: Design and build proof-of-concept RHX-based thermoelectric refrigerator (M22-M36),	• Demonstrate a high-COP RHX-based thermoelectric refrigerator, developed to TRL 4 by the end of year 3 and having a COP comparable to VCC refrigerators.			
	Project Milestone (M36): Demonstrate TRL 4 RHX-based thermoelectric refrigerator having a COP within 10% of a vapor compression refrigerator.				

Thank You

Sandia National Laboratories Wayne Staats, PhD wstaats@sandia.gov

REFERENCE SLIDES

Project Budget

Project Budget: Federal funds: \$1350k Cost-Share: N/A (FFRDC) Total: \$1350k Variances: Cost to Date: \$260k Additional Funding:

Budget History							
10/1/2019 – FY 2019 (current)		FY 2020 (planned)		FY 2021 – <mark>9/30/2021</mark> (planned)			
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share		
\$450k	N/A	\$450k	N/A	\$450k	N/A		

Project Plan and Schedule

Year	Task	Description				
1	Task 1: Design experimental apparatus and characterize local heat transfer (M1-M18)	Design experimental apparatus to accurately determine the local heat transfer characteristics under the range of conditions encountered in RHXs				
	Project Milestone (M8): Demonstrate operation of rotating IR camera system and make measurements on a test object.					
	Task 2: Conduct targeted computational study of fundamental RHX heat transfer (M1-M18)	 Test the boundary conditions and setup, assess results by comparison to experiments Test the dynamic subgrid-scale model to ensure smooth transition between LES and DNS Perform simulation runs with increasing fidelity and validate against experiments Analyze and interpret results for novel insights into physical mechanisms 				
	Go/No-Go Decision Point 1 (M12): Demonstrate that results of computational model agree with average flow and heat transfer measurements of baseline RHX designs under various operating conditions.					
2	Task 3: Develop high-performance RHX designs and design methodology (M15-M24)	 Develop high-performance RHX designs that exceed the heat transfer performance of the baseline design and publish a design methodology for RHX technology Develop fundamental understanding of heat transfer in rotating heat exchangers and identify hierarchy of mechanisms, resulting in a correlation for the local heat transfer coefficient 				
	Go/No-Go Decision Point 2 (M24): Demonstrate at least 1 RHX design that exceeds thermal performance of baseline RHX design.					
3	Task 4: Design and build proof-of-concept RHX-based thermoelectric refrigerator (M22-M36),	• Demonstrate a high-COP RHX-based thermoelectric refrigerator, developed to TRL 4 by the end of year 3 and having a COP comparable to VCC refrigerators.				
	Project Milestone (M36): Demonstrate TRL 4 RHX-based thermoelectric refrigerator having a COP within 10% of a vapor compression refrigerator.					

References

[1] https://www.energy.gov/sites/prod/files/2015/10/f27/Ch5-SI-building-technologies-potential-savings-analysis-10-6-15.pdf

[2] https://www.energy.gov/eere/buildings/road-zero-does-next-generation-heatingand-cooling-rd-strategy

[3] <u>https://ww2.arb.ca.gov/resources/documents/high-gwp-refrigerants</u>

[4] Schlichting, H. "Boundary-layer theory," Seventh edition, McGraw-Hill series in mechanical engineering, pp. 102-107, 1979.

[5] Benton, G., & Boyer, D. (1966). Flow through a rapidly rotating conduit of arbitrary cross-section. Journal of Fluid Mechanics, 26(1), 69-79. doi:10.1017/S0022112066001095

[6] Staats, W.L., Active heat transfer enhancement in integrated fan heat sinks, doctoral dissertation, Massachusetts Institute of Technology. http://hdl.handle.net/1721.1/80414, 2012.

[7] <u>http://www.optovision.fr/IMG/pdf/flir_quark2_brochure.pd</u>f

[8] https://products.geappliances.com/appliance/gea-specs/GCE06GSHSB