

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Integration of Piezoelectric Sensor-Actuators into Heat Exchanger Headers to Alleviate Flow Maldistribution in Real Time

Oak Ridge National Laboratory Viral K. Patel, R&D Associate Staff patelvk@ornl.gov

Project Summary

<u>Timeline</u>:

Start date: 10/01/2018 Planned end date: 09/30/2020

Key Milestones

- 1. Literature review, 12/31/2018 (complete)
- 2. Identification of refrigerant maldistribution indicators, 03/31/2019 (complete)
- 3. Heat exchanger (HX) flow distribution model, 06/30/2019 (on track)

Budget:

Total Project \$ to Date:

• DOE: \$450k

Total Project \$:

• DOE: \$900k

Key Partners:

Multi-Scale Heat	Academic partner
Transfer Laboratory,	(subcontract)
Worcester	
Polytechnic Institute	
(WPI)	

Project Outcome:

- This project will use HX-integrated sensor-actuators to mitigate flow maldistribution in real time to improve the system's efficiency by up to 10%.
- Successful implementation in residential heating, ventilating, and air-conditioning (HVAC) HXs (for example) will have primary energy savings technical potential of 225 TBtu for the 2030 energy market in all climate zones.
- The project supports the 2030 Multi-Year Program Plan (MYPP) goal to develop cost-effective technologies capable of reducing a building's energy use per square foot by 45%, relative to 2010.
 - Aligns with strategy of funding early-stage R&D

Team

Challenge

- Maldistribution of refrigerant in heat exchangers is known to reduce their performance
 - Nonuniform air-side and refrigerant-side flow leads to local high-temperature hot spots, increased refrigerant superheat, increased pressure drop, and increased compressor and blower work → lower HX capacity and system coefficient of performance (COP)
 - Air-conditioning, Heating & Refrigeration Institute (AHRI) five-year test data show estimated 70% of HXs underperform because of maldistribution
- Current methods of addressing geometryinduced flow maldistribution in HXs involve a costly redesign process of headers and tubes
 - These have limited impact for particular operating conditions
- Few viable and cost-effective solutions exist for real-time mitigation of refrigerant maldistribution in HXs

Proposed Solution

- In the proposed technology, piezoelectric sensor-actuators are *integrated directly into the heat exchanger headers* to simultaneously sense maldistribution and actuate the flow in *real time* to *compensate for refrigerant maldistribution*
- This provides an effective solution with real-time response capability and can potentially be retrofitted into existing heat exchanger designs

Proposed Solution

- Piezoelectrics are ubiquitous devices used in medical applications, nondestructive testing, ultrasonic cleaning, etc.
- They rely on direct and inverse piezoelectric effects
- They include both sensors and actuators:

Ultrasonic flow sensor

Piezo micropump

Piezo valve (www.festo.com)

- For this project, we will consider combining both sensors and actuators into a single, compact package for integration into an HX header
- Dual functionality might be achieved simply by adjusting the frequency
- Operation frequencies will be such that they will not introduce additional sources of vibration to affect HX or tube integrity

Approach

Advantages and Differentiation

Impact

- Literature shows that much work has been dedicated to understanding the underlying causes and effects of refrigerant maldistribution
 - However, few realizable solutions exist!
- This project will:
 - Add to the knowledge base by providing a new fundamental understanding of electromechanically actuated flow distribution control in HXs
 - Address a challenging problem by providing real-time flow distribution control that could not be resolved by previous static solutions with limited applicability
 - Pave the way for further development of a new class of state-of-the-art HXs
- If successfully implemented in HX designs currently used for residential HVAC (for example) with 10% improvement in system efficiency, primary energy savings technical potential will be 225 TBtu for 2030 energy market in all climate zones
- Target audience/customers:
 - General HX R&D community, HX manufacturers, equipment manufacturers

Progress — Literature Review

• General literature was compiled into a spreadsheet and organized into several categories: equipment type, HX type, general dimensions, nominal capacity, refrigerant pressure/flow rate, max HX capacity loss due to maldistribution

Progress — Major Findings from Literature

- Maldistribution mitigation in *evaporators* where refrigerant enters as a liquid-vapor mixture appears to be a more pressing need
- Large number of studies exist on fin-tube HXs with refrigerant distributors, but mini/microchannels are gaining wider adoption \rightarrow we plan to focus on these:
 - They are compact, efficient, and have lower charge (important for adoption of new A2L refrigerants), but refrigerant maldistribution issues also tend to be more pronounced, especially in the headers
- From a cost and economics perspective, we are targeting a heat pump type system in the 1–2 kW range
- From an engineering perspective regarding the benchtop experimental setup, we will use a low- to medium-pressure refrigerant, e.g., R-134a
- The aforementioned selections have allowed us to pin down the saturation temperature, pressure, and refrigerant flow rates for the model
- The HX will have a *vertical header* with *horizontal parallel channels* to account for gravitational effects on maldistribution
- We will model a *minimum of three channels* to properly characterize the distribution, depending on computational power and time
- The header will reflect *practical design* in terms of length and microchannel-tomicrochannel spacing

Progress — CFD Simulation

- Single-phase flow model complete and running
 - Water as working fluid, overall flow 0.01 kg/s
 - Parameters include tube insertion depth, flow rate, and header orientation

Progress — Benchtop Experimental Setup

 Initial benchtop setup being fabricated with water as the working fluid

- Aluminum microchannels selected:

 HX assembly fabricated with transparent polycarbonate headers:

Stakeholder Engagement

- Direct engagement with HX and equipment manufacturers and Better Buildings partners → This is an explicit task in the technical work plan
 - Task 5: Validate research and demonstrate relevance to a marketplace problem
 - Subtask 5.1: Engage with external stakeholders, share results so far and ensure market relevance for proposed technology
 - Milestone 5: In collaboration with stakeholders, verify that the research is technically sound, relevant to the market, satisfies an unmet market need, and if successful, will save energy in buildings
 - Deliverable 5: Report of research validation with stakeholder input
- Publication of research in peer-reviewed journals, conference presentations, and publications
- Highlighting research in DOE BTO Success Stories
- Organizing industry visits
- Communicating with email and conference calls
- Other outreach through ORNL and ORNL Building Technologies Office websites
- Formation of related cooperative research and development agreements (CRADA) with industry partners to continue research

Remaining Project Work

• FY 2019

- HX flow distribution model-complete HX flow distribution model
- Sensor-actuator requirements use model results to determine piezoelectric sensor-actuator requirements
- Validate research-in collaboration with stakeholders, verify that the research is technically sound, relevant to the market, etc.

• FY 2020

- Piezoelectric sensor-actuator fabrication assemble piezoelectric sensor-actuators and prepare for install
- Benchtop experimental setup-complete transparent HX fabrication
- Shakedown testing-complete shakedown testing and acquire preliminary data
- Demonstrated performance-through a combination of experimental and modeling results, demonstrate increase in heat transfer efficiency by 15% and potential for increasing system efficiency by ≥10%

Thank You

Oak Ridge National Laboratory Viral K. Patel, R&D Associate Staff patelvk@ornl.gov

REFERENCE SLIDES

References

- 1. Choi, J. M., Payne, W. V., and Domanski, P. A., 2003, "Effects of non-uniform refrigerant and air flow distributions on finned-tube evaporator performance," Proc. International Congress Refrigeration, Washington, DC.
- 2. Tuo, H., and Hrnjak, P., 2013, "Effect of the header pressure drop induced flow maldistribution on the microchannel evaporator performance," International Journal of Refrigeration, 36(8), pp. 2176-2186.
- 3. Huang, L., Lee, M. S., Saleh, K., Aute, V., and Radermacher, R., 2014, "A computational fluid dynamics and effectiveness-NTU based co-simulation approach for flow mal-distribution analysis in microchannel heat exchanger headers," Applied Thermal Engineering, 65(1-2), pp. 447-457.
- Byun, H. W., and Kim, N. H., 2011, "Refrigerant distribution in a parallel flow heat exchanger having vertical headers and heated horizontal tubes," Experimental Thermal and Fluid Science, 35(6), pp. 920-932.
- Misfeldt, Ib. 2010, "Flow Mal-distribution on Evaporators." Technical University of Denmark. Department of Mechanical Engineering. Retrieved from http://www.mek.dtu.dk/English/Research/PhD%20Projects/phd_martinryhlk%C3%A6rn.aspx
- 6. Danfoss. 2009. "EcoFlow Innovation Presentation." Danfoss A/S. Retrieved from http://www.tholander.dk/media/1885/ecoflow_brochure_090831_lowres_opslag.pdf.
- Kim, J.-H., Braun, J. E., and Groll, E. A., 2009, "A hybrid method for refrigerant flow balancing in multicircuit evaporators: Upstream versus downstream flow control," International Journal of Refrigeration, 32(6), pp. 1271-1282.

Project Budget

Project Budget: \$900K DOE Variances: No variances Cost to Date: \$66K Additional Funding: No additional funding

Budget History												
10/01/201 (pa	.8– FY 2018 ast)	FY 2019	(current)	FY 2020 – 09/30/2020 (planned)								
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share							
		\$450k	\$0	\$450k	\$0							

Project Plan and Schedule

				Q1			Q2			Q3			Q4			Q5			Q6			Q7			Q8	
Task	Subtask		M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19	M20	M21	M22	M23	M24
			Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1		Literature review		_																						
	1.1	Literature review			Ī																					
	1.2	Identify target system																Project Start: 10/01/2018								
2		Identification of refrigerant																Projected End: 09/30/2020								
		maldistribution indicators																								
	2.1	Examine literature for																Regular milestone (completed)								
		maldistribution indicators																								
	2.2	Identify indicators and																К	legula	r mile	stone	(plann	ied)			
2		sensors										<u> </u>						Go/No-go milestone (planned)								
3		HX flow distribution model								-		<u>/</u>						L •								
	3.1	flow																								
	3.2	Complex model - artificial maldistribution																								
	3.3	Sensor-actuator sub-model																								
		Closed-loop feedback																								
	3.4	control implementation																								
4		Sensor-actuator													\rangle											
	4.1	Actuator requirements																								
	4.2	Sensor requirements																								
	4.3	Sourcing components																								
5		Validate research																								
	5.1	Engage with stakeholders												1												
6		Piezoelectric sensor-															<	$\mathbf{}$								
	C 1	actuator fabrication																Y								
	6.2	Assemble sensor-actuators							_																	
7	0.2	Renchton experimental							_										<u> </u>							
,	71	Eabricate custom HX																								
	7.1	Install all sensors and																								
	7.2	controls																								
	7.3	Complete overall assembly																								
8		Shakedown testing																		1		$\mathbf{}$				
	8.1	Baseline experiments																				Ť				
	8.2	Shakedown experiements																								
9		Demonstrated performance																								\diamond
	9.1	Analyze previous data																								
		Adjust parameters and																								
	9.2	controls																								
		Final experimental																								
	9.3	demonstration																								