Fort Carson Battery Energy Storage System

Michael Belles, Sr. Project Manager, AECOM

Hosted by:

FEMP
Federal Energy Management Program

SDGE
A Sempra Energy utility
Introduction

• What is a BESS?
• Demand Savings
• Why Fort Carson?
• Considerations for Design
• Project Economics
• Utility Impacts and Teaming
• Construction
• Things to Consider
• Other Use Cases
Battery Energy Storage System

• What is a BESS?
 – Battery: Cells – Modules – Racks – Enclosure
 – Battery control systems, safety devices, system cooling and support
 – Inverters, bi-directional transformers, protective devices, point of common connection
 – Charge/discharge control, communications

• Resilience Benefits
Using A BESS for Peak Shaving
(Demand Charge Management)

- Demand based on monthly maximum
- Tariff supports opportunity for savings
- Demand profile is shave-able
- Consider both Power and Energy
 - Maximum discharge rate (in kW) – determines max savings
 - Total battery capacity (in kWh) – enough to achieve savings
- Capacity must last through the entire peak
 - Savings most often capacity limited
Using A BESS for Peak Shaving (Demand Charge Management)

- **Dumb Battery** – no discharge control
 - Low power (savings) to energy (cost) ratio
 - Not economically viable

- **Smart Battery**
 - Decrease capacity, increase discharge rate
 - Requires predictive control for real time use
 - Increases savings risk
Fort Carson was a Good Candidate

- Large demand charge
- Tariff support peak shaving
- Peak is shave-able
- Customer was interested in a BESS
- Customer understood the associated risks
- Good relationship with serving utility
- Interconnection Agreement changes not required
Fort Carson was a Good Candidate Cont’d

• Also
 – Fort Carson DPW has an appetite for innovative projects
 – 8 MW of existing Solar PV, going to 15 MW
 – Existing infrastructure capacity
Challenges

• Must be a smart battery
• 6 separate meters aggregated to 1 bill
 – Must monitor all 6 in real time
• Contribution from external supply (WAPA)
• Seasonal Impacts
• Solar introduces profile variability
System Design Considerations

• Detailed analysis of historical data
• Survey of market participants
 – Offerings must match project needs
• Communications between components
• Redundancy, limit single points of failure
 – Risk mitigation
• No export to utility
• Remote substations
Economics

• Demand is 55% of Fort Carson’s electric Bill
 – Need to capture about 3,200 kW a month

• DCM will result in $525K in annual savings
 – ESUs 70% of cost, BOS and installation made up remaining 30%

• ~90% efficient

• No time of use shifting opportunity

• Complete package payback under 20 years
 – Includes performance period costs and financing
Utility Interest in Behind-the-Meter BESS

Support Customer Goals

- Regulatory Mandates
- Investment Deferral
- Demand Response
- Experience

FEMP
Federal Energy Management Program
SDGE
Sempra Energy
way
Fort Carson BESS Installation
Fort Carson BESS Installation
Things to consider

- Application very specific to situation
- Importance of historical data
 - Analysis & design
 - Power & energy requirements
 - Duty cycle (impact to system degradation)
- Tariff/savings methodology
- Match use case to economics
- Existing/planned distributed generation resources
- Interconnection agreement
- Cyber security
Things to consider, continued

- Stakeholder engagement
- Understand/share the risk
 - Customer must understand risks
- Details
 - Understand how savings will be achieved
 - Understand impacts to load profile
 - M&V (Demand reduction guarantee)
Other Economic Use Cases

• Equipment upgrade deferral
• Power factor correction (VAR support)
• Equipment substitution
 – Frequency control
 – Solar firming/ramp rate control
 – Voltage regulation
• Demand response
• Time-of-use shifting
Questions?