Bringing you the NEXT GENERATION of transit.

PLAN. BUILD. MOVE. Sb

Carrie Schindler, PE Director of Transit & Rail

San Bernardino County Transportation Authority Omnilians

Redlands Passenger Rail Project

Diesel Multiple Unit Conversion

Diesel Multiple Unit Conversion

TIRCP Grant Award \$30M

 SBCTA received funding from Transit and Intercity Rail Capital Program (TIRCP) to complete research and development on zero or low emissions rail vehicles (ZEMU)

Funding for:

- Research on the conversion of Diesel Multiple Unit to Zero Emission Multiple Unit
- Development of suitable technology and procurement of the zero emission unit and testing on the Arrow corridor

SBCTA ZEMU Program Approach

Phase 1 – Planning

Phase 2 – Design & Engineering

Phase 3 – Project Implementation and Construction

ZEMU Overview

Selection of Preferred Technology

Capital, Operations & Maintenance 0

Infrastructure

Cost

Environmental Considerations

Operations

3

Land use, GHGs, Aesthetics, Noise, Socio-Economic

Right-of-Way, Charging & Fueling, Utilities

Range, Scalability, Reliability, Operations, Life Span

Regulatory Compliance

Implementation Schedule

Risk Analysis

Timeline for Planning, Design, Construction phases

Identify and document risks for further analysis

FRA, NFPA, CPUC

Evaluation Criteria

Key Tasks Underway

- Task 3 ZEMU Project Definition and Constraints
- Task 4 Assessment of OESS Rail Vehicle and Charging System Alternatives
- Task 5 OESS and Charging Systems Feasibility Studies
- Task 6 Options Evaluation and Report
- Task 7 Contract Development for Supplier

Key Dates

- April 2018 Grant Award
- October 2018 Grant Allocation
- March 2019 Complete Task 3 & 4
- April/May 2019 Update to Transit Committee/Board & Complete Task 5
- June/July 2019 Board direction on technology to carry forward (Task 6)
- July 2019 Vehicle RFP

ZEMU Phase 1

Attendance at workshops, seminars, facility tours including:

- Lessons learned from Midlands Metro Rail (Birmingham, England)
- SunLine Transit hydrogen facility tour
- Railway Motive Power and Alternative Propulsion Seminar

Supplier engagement

 Interviewed suppliers of battery, hydrogen fuel cell technologies and also rolling stock providers

Midlands Metro Rail Lessons Learned Workshop

Task 3 – Research Technologies

Birmingham International

SunLine Transit Hydrogen Facility Tour

FC11 M

SunBus

HYDROGEN FUEL CELL

n Tomorrow - Today

Task 3 – Research Technologies

RADI

Railway Motive Power and Alternative Propulsion Seminar – Port Tour

Railway Motive Power and Alternative Propulsion Seminar – Port Tour

Engagement with Suppliers

High Level Pre-Screening

Category	Baseline – Arrow DMU	Wayside Power Supply		On-Board Energy Storage Systems (OESS)					Hybrid Systems			
Rail Technology	Diesel	Overhead Contact System (OCS)	Ground Level Power Supply – Third Rail	Battery	Supercapacitor	Hydrogen Fuel Cell	Biofuel	Natural Gas	Hydrogen Fuel Cell + Battery	Diesel + Battery	Biofuel + Battery	Natural Gas + Battery
Relative Capital Costs	Good Existing technology with known range of costs	Poor Design and installation of catenary systems and substations	Poor Design and installation of 3 rd rail system and substations. Requires grade separations at many road crossings	Moderate Committee or an of the average selling price of a diesel vehicle. Design and installation of charging infrastructure, possibly at several locations along the route, likely requiring substation(c)	Moderate Estimate to alor or 15% of the average selling price of a diesel vehicle. Design and installation of charging infrastructure, possibly at several locations along the route, likely requiring substation(s)	Moderate/Poor	Good The same equipment can be used for refueling up to high blends of biofuel substitution	Good/Moderate Combustion engine similer to diesel and natural gas/diesel blends possible. Additional cost for natural gas refueling infrastructure	Moderate/Poor Estimated to 800 20- 25% to selling price of comparable diesel vehicle. Single refueling station needed, with refueling <u>0,0,0,0,000</u> kajis or less possible	Good Only major cost would be the addition of batteries to vehicles	Good/Moderate The same equipment can be used for refueling up to high blends of biofuel substitution. Additional cost of batteries.	Moderate Combustion engine similar to disset blends possible. Additional cost for refueling infrastructure and batteries, and if dissel/natural gas capable additional on-board enuinment
Relative Life Cycle Cost	Moderate/Poor Existing technology with largely known coats, however operating costs influenced by relatively low energy efficiency. i.e. high fuel consumption, and diesel price volstility. Risk of not meeting future emission regulations.	Good/Moderate Limited maintenance cost over its useful life and low energy cost at current rates but high capital cost spread over relatively infrequent service	Good/Moderate Limited maintenance cost over its useful life and low energy cost at current rates but high capital cost spread over relatively infrequent service	Moderate Expected reduction in energy costs. High cost to replace batteries after reasonable life span.	Good/Moderate Expected reduction in energy costs. High cost to replace supercapacitors, but life span roughly 1.5 to 2 x battery life.	Moderate Limited maintenance cost over its useful life span, but fuel costs are high at low consumption rates. On-site production has potential for cost simpler g/ diesel. High cost of retueling / production station.	Moderate/Poor Similar ta conventional diesel.	Good/Moderate Will have further increased energy consumption than dissel buit currently low energy cost for natural gas.	Moderate Similar life cycle costs as a hydrogen FCS but with battery replacement added. However, FCS and battery systems will be smaller than if either single technology were to be used.	Moderate Limited maintenance cost over its useful life but batteries will need to be replaced throughout vehicle life, but smaller capacity battery than a battery- only OESS	Moderate Şimjlar, tə conventional diesel + battery.	Moderate Wil have sliphtly increased energy output of the sliphtly diseal hybrid but currently low energy cost for natural gas. <u>Buts</u> battery replacement costs.
GHG Emissions	Poor While Tier 4 compliant, still results in diesel combustion emissions.	Good Zero local emissions	Good Zero local emissions	Good Zero local emissions	Good Zero local emissions	Good Zero local emissions	Moderate/Poor Combustion in engine results in emissions. Reduction of some local emission; overall GHG dependent on production method of biofuel	Moderate Combustion in engine results in emissions. Significant reduction in local emissions and GHG but not zero local emissions.	Good Zero local emissions	Poor Still results in typical diesel combustion emissions. Batteries provide some reduction of emissions.	Moderate Combustion in engine results in emissions. Reduction of local emission; oversall GHG dependent on production method of biofuel. Batteries further reduce emissions.	Good/Moderate Combustion in engine results in emissions. Significant reduction in local emissions and GHG but not zero local emissions. Batteries further reduce emissions.
Aesthetics	Good No changes over existing corridor	Poor Visual impacts due to overhead wires along entire corridor	Moderate Likely requires grade separation but no overhead wires	Good No changes over existing corridor	Good No changes over existing corridor	Good No changes over existing corridor	Good No changes over existing corridor	Good No changes over existing corridor	Good No changes over existing corridor	Good No changes over existing corridor	Good No changes over existing corridor	Good No changes over existing corridor
Range	Good Full length of corridor, daily refueling or better	Good Full length of corridor	Good Full length of corridor	Moderate Longer range needs larger batteries and more charging points	Poor Require regular charging but can quick charge	Good Full length of corridor, daily refueling or better	Good Full length of corridor, daily refueling or better	Good Full length of corridor, daily refueling or better	Good Full length of corridor, daily refueling or better	Good Full length of corridor, daily refueling or better	Good Full length of corridor, daily refueling or better	Good Full length of corridor, daily refueling or better
Scalability	Good Due to range and infrastructure can be easily expanded	Poor Unlikely to be able to operate in mixed corridors with freight	Poor Unable to operate in mixed corridors.	Moderate Will require new charging infrastructure along expanded route	Moderate Will require new charging infrastructure along expanded	Good Due to range and lack of new infrastructure can be easily expanded	Good Due to range and lack of new infrastructure can be easily expanded	Good Due to range and lack of new infrastructure can be easily expanded	Good Due to range and lack of new infrastructure can be easily expanded	Good Due to range and lack of new infrastructure can be easily expanded	Good Due to range and lack of new infrastructure can be easily expanded	Good Due to range and lack of new infrastructure can be easily expanded
Life Span	Good <u>30 year</u> life of diesel engine, with engine overhaul typically 8-10 years	Good >30 years	Good >30 years	Poor Will have to replace batteries 8-10 years, similar time scale to diesel overhaul.	Moderate Will have to replace super capacitors after 10-15 years.	Moderate Requires midlife overhaul(s), similar time scale to diesel overhaul.	Good Similar to conventional diesel, <u>30.year</u> engine life, overhaul typically 8- 10 years	Good Similar to conventional diesel, <u>30 year</u> engine life, overhaul typically 8-10 years	Moderate Requires midlife overhaul(s), similar time scale to diesel overhaul. Battery replacement 8- 10 years.	Moderate <u>30 year</u> life of diesel engine, battery replacement and, engine overhaul both typically 8-10 years	Moderate <u>30 year</u> life of diesel engine, battery replacement and, engine overhaul both typically 8-10 years	Moderate <u>30 year</u> life of diesel engine, battery replacement and, engine overhaul both typically 8- 10 years.
Regulatory Compliance	Good FRA compliant vehicle	Poor Likely incompatible with freight railroads	Poor Likely incompatible with freight raitroads or at grade crossings.	Moderate No current FRA specific standards	Moderate No current FRA specific standards	Moderate No current FRA specific standards	Good No major changes compared to diesel.	Moderate FRA specific standards exist for natural gas, which require co-ordination especially if vehicle operated over other railroads tracks.	Moderate No current FRA specific standards	Moderate/Good No current FRA specific standards for batteries but like existing rail freight hybrid vehicles	Moderate/Good No major changes compared to diesel but no FRA specific standards for battery.	Moderate FRA specific standards exist for natural gas, which require co- ordination especially if vehicle operated over other railroads tracks. No FRA standard for battery.
Result	Daseillie	Incompatible	mcompatible	Compatible	Companye		Tipatible		Compatible	псотрацые	mcompatible	incompatible

Energy Usage & Modeling Scenarios

			Energy Between Terminals							
		Section	Scenario 1 2-Car ZEMU		Scena 4-Car	ario 2 ZEMU	Scenario 3 2-Car + 2-Car			
Jou	Journey		No Regen. Braking (kWh)	With Regen. Braking (kWh)	No Regen. Braking (kWh)	With Regen. Braking (kWh)	No Regen. Braking (kWh)	With Regen. Braking (kWh)		
RPRP - West End	RPRP – East End	8.89	157.59	140.93	224.90	205.45	239.50	220.29		
RPRP – East End	RPRP – West End	8.89	78.36	32.13	112.88	48.04	99.58	14.47		
LA	RPRP – West End	57.63	811.77	672.23	1058.33	882.55	1163.83	959.13		
RPRP – West End	LA	57.63	680.56	496.54	857.60	614.06	919.40	619.55		

Power Demand Modeling

Performance and Energy Usage Modeling

Primary inputs

- Vehicle characteristics (mass, loading condition, tractive & braking curves, rotating inertia, electrical efficiencies and auxiliary loads)
- Track characteristics (distances, grades, curves, speed limits and restrictions)

Applications

- Quantify key requirements power charge/discharge rates and energy storage capacity
- Support assessment of technology feasibility

Task 4 – Modeling

FRA Engagement Process

Next Steps

- Complete Feasibility Studies and Evaluation of OESS and Hydrogen Technologies
- Engagement with FRA Develop plan for ongoing engagement
- SBCTA evaluation and selection of preferred technology alternative by SBCTA Board
- Engineering of ZEMU vehicle
- Determination of infrastructure needs and engineering design
- Project procurement and implementation
- FRA concurrence
- Operational testing
- Revenue service
- Statewide analysis for ZEMU service in California

Plan. Build. Move.

The state

www.goSBCTA.com 909.884.8276

