

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

H2@Scale and H2@Rail: Progress, Opportunities and Needs

Dr. Sunita Satyapal – Director, Fuel Cell Technologies Office

H2@Rail Workshop

Lansing, MI – March 26, 2019

Hydrogen is Part of an All of the Above Portfolio

Clean, sustainable, versatile, and efficient energy carrier

An exciting time for hydrogen and fuel cells

650 Fuel Cell Power Shipped (MW) worldwide in 2017*

Sales in 2017

- 70,000 fuel cell units shipped*
- Global sales for electrolyzers estimated at over 100MW/year**

*DOE and E4tech

**Courtesy of NOW, E4tech and partners: A collaborative effort to assess electrolyzer market potential

Over 6,500 fuel cell cars sold or leased in the United States. Over 360 mi driving range.

International Commitment Ramping Up

Source: IPHE

Automotive Executives Survey Results

Battery electric mobility

First time fuel cell electric mobility ranks #1 trend among executives

Source: KPMG Global Automotive Executive Survey 2018

Long-Range, Heavy Duty Applications Emerging

Fuel cell delivery and parcel trucks starting deliveries in CA and NY

Fuel cell buses in CA surpass 19M passengers

Industry demonstrates first heavy duty fuel cell truck in CA

Material Handling Equipment Applications

More than 25,000 forklifts

Over 16 million refuelings

Examples of fuel cell activities for rail applications

Alstom iLint Coradia

German, 2017

FC Tram Locomotive

Spain, 2011

CRRC Fuel Cell Tram

China, 2015

FC Mining Vehicle

South Africa, 2012

BNSF Fuel Cell Shunter

California, 2008

FC Hybrid Railcar

Japan, 2006

Emergence of Hydrogen and Fuel Cells in the U.S.

Examples of Application in the United States Over >240MW **Backup Power** More than ~25,000 **Forklifts** More than ~35 **Fuel Cell Buses** ~40 H₂ Retail Stations Over >6,500 **Fuel Cell Cars**

States with Growing Interest

California 1,000 stations by 2030 Northeast 12 – 20 stations planned HI, OH, SC, NY, CT, MA, CO, UT, TX, MI, and others with interest

H₂@Scale: Enabling affordable, reliable, clean, and secure energy across sectors

What is different now?

Record-Low PPA Prices for Utility-Scale Solar

Source: GTM, DOE Solar Technologies Office

Electricity Mix Landscape is Changing

Example: Installed Capacity in Texas

Source: ERCOT, DOE H2@Scale Workshop, TX

Utilities are facing Challenges: Duck Curve Example

Two Concerns:

- Low Net Load:
 flexibility to reduce
 baseload
 generation
 resources is limited
- High Ramp Rates

 in Evening:
 flexibility of other
 generation to ramp
 up is limited

Can be addressed by

Opportunity for Energy Storage

- Hydrogen can offer long duration and GWh scale energy storage
- Capacity 10 GW 1.4 1 GW Pumped Hydro Storage 1.2 LCOE of peak power (2016\$/kWh) Geographical 100 MW Compressed air capacity constraints Hydrogen storage¹ 1.0 10 MW 0.8 1 MW 0.6 100 kW 12h Battery 10 kW 0.4 Super 1 kW capacitor 0.2 0.0 Minute Hour Day Week Season 0 **Discharge duration**
- Analysis shows potential for hydrogen
 to be competitive at > 10 hours

Source: Hydrogen Council

Source: NREL (preliminary)

Lab testing shows value of electrolyzers for ancillary services

First Ever Validation of Frequency Regulation with Electrolyzers

H₂@Scale: Nationwide Resource Assessment

Assessing resource availability. Most regions have sufficient resources.

Red: Only regions where projected industrial & transportation demand exceeds supply.

Electricity: ~\$600-\$3,500 per MW-mile

Hydrogen Pipeline: ~\$200-400 per MW-mile

Assessing cost of H₂ vs

electricity transmission

(in process)

Robson, A. Preserving America's Clean Energy Foundation. Retrieved March 23, 2017,

from http://www.thirdway.org/report/preserving-americas-clean-energy-foundation

Data Source: NREL analysis

Announced Retirement

Recently Retired

350 - 1,000

-12.200 - 0

0 - 350

Freight Routes by Region

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY FUEL CELL TECHNOLOGIES OFFICE

Hydrogen Demand Forms Regional Clusters

Diesel Consumption in the Rail Sector

Examples of Intermodal Routes in the U.S.

H₂@Rail and H₂@Ports Initiatives

- Collaboration with:
 - DOT-Federal Railroad
 Administration
 - DOT-Maritime Administration
- Conduct R&D to assess the technical and economic potential of hydrogen use for:

Prime propulsion & auxiliary railway locomotives

Maritime applications

1 passenger car uses ~ 5 kg H₂ for over 300 mile range

How much hydrogen for rail?

Smallest Example: 100 kg $H_2 = 20$ automobiles Potential for several hundred cars worth of H_2

Key Driver -Affordability

Annual Costs Example: Passenger Rail – UC Davis Study

Hydrogen fuel technology cost is slightly higher than the diesel, LNG, and biodiesel, but much less than catenary electric technology

Source: Isaac, Raphael et al. UC Davis (2016)

Preliminary Argonne TCO results

If fuel cell and hydrogen technology performance and cost targets are met, they could compete with diesel rail power for various rail applications.

Cost Status vs Targets – Automotive Application

Example of Alternate Hydrogen Storage Options

Cryo-compression can offer densities higher than liquid hydrogen

Collaborations and Next Steps

IPHE: International Partnership for H₂ and Fuel Cells in the Economy: www.iphe.net

Government partnership to **share** information and **increase** international **coordination** and **collaboration** to **accelerate progress**

Launched 2003 and includes 18 countries and the European Commission

Collaboration: New H₂ Safety Partnership

Leverages new partnership to promote collaboration on safety

ENERGY

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

April 1-2, AICHE Meeting, LA

Funding

Distribution of FCT	O FY19	Funding:	\$120 M
----------------------------	--------	----------	---------

..

FCTO Appropriations

	FY 2017	FY 2018	FY 2019	
Key Activity	(\$ in thousands)			
Fuel Cell R&D	32,000	32,000	30,000	
Hydrogen Fuel R&D	41,000	54,000	39,000	
Hydrogen Infrastructure R&D	-	-	21,000	
Systems Analysis	3,000	3,000	2,000	
Technology Acceleration	18,000	19,000	21,000	
Safety, Codes and Standards	7,000	7,000	7,000	
Total	101,000	115,000	120,000	

FY19 Request: New Infrastructure R&D Subprogram in Budget

Office	FY 2018	
Onice	(\$ in thousands)	
EERE (FCTO)	115,000	
Science (Basic/xcut)	19,000	
Fossil Energy (SOFC)	30,000	
Total	~164,000	

Just Announced: Funding for H₂@Scale and Trucks

H2@Scale - Up to \$31M

H₂ production, storage and utilization concepts

Concept Papers due 4/8 Full Apps due 5/29

Trucks – Up to \$15M H₂ storage, refueling technologies and fuel cell R&D Concept Papers due 3/29 Full Apps due 5/15

More information on the EERE Exchange Website or Grants.gov

Opportunities for outreach and to increase awareness

Celebrate National Hydrogen & Fuel Cell Day October 8 or 10/08

(Held on its very own atomic- weight-day)

Information and Training Resources to Increase Awareness

H2tools.org

INCREASE YOUR

Download for free at: energy.gov/eere/fuelcells/downloads/increa se-your-h2iq-training-resource

Learn more at: energy.gov/eere/fuelcells

Save the Date and Sign up for Our Newsletter

All relevant DOE offices and other federal agencies working on hydrogen and fuel cell technologies at Annual Merit Review (AMR)

> 2019 AMR – April 29 – May 1 Crystal City, VA www.hydrogen.energy.gov

Sign up to receive hydrogen and fuel cell news and updates

www.energy.gov/eere/fuelcells/fuel-cell-technologies-office-newsletter

Summary and Next Steps

 Using H₂ for large scale applications across sectors aligns with H2@Scale and can enable energy security, economic value and environmental benefits. Rail and marine applications can play a role.

Joint DOE-DOT FRA Project

- Conduct analysis on H₂ and fuel cells rail applications.
 - TCO, impact potential (petroleum, emissions reductions, etc.)
- Develop technical and cost targets.
- Identify barriers and opportunities for RD&D and collaborations to help define future plans.

Workshop Objectives

- Assess the state of the art on electric rail power propulsion using fuel cells
- Discuss requirements and lessons learned from early fuel cell rail projects
- Identify technology gaps, R&D needs and potential collaborative opportunities

Solicit feedback from stakeholders to help guide future activities

Thank You

Dr. Sunita Satyapal Fuel Cell Technologies Office

energy.gov/eere/fuelcells

EERE Fuel Cell Technologies Office (FCTO)

Early R&D Focus	Applied research, development and innovation in hydrogen and fuel cell technologies leading to:		Energy securityEnergy resiliencyStrong domestic economy
Early R&D Areas			
	К		
Fuel Cells	Hydrogen Fuel	Infrastructure R&D	Enabling
 PGM- free catalysts Durable MEAs Electrode performance 	 Production Pathways Advanced materials for storage 	 Safety Manufacturing Delivery components Others 	U.S. Department of Energy
MEA = Membrane Electrode Asse	mbly		

Fuel cells operating all over the U.S.

Fuel cells used for backup power in more than 40 states

Over 8,000 backup power units

deployed or on order

Source: DOE State of the States: Fuel Cells in 2016 Report

Over 240MW

in stationary fuel cell power installed

Telecom, Government, Railroad, Utility sites
Telecom, Government, Railroad sites
Telecom and Government sites
Government, Railroad, Utility sites
Telecom sites
Government sites
Railroad sites
Utility sites
Government and Railroad sites
Telecom and Railroad sites

Rail transport is the second largest diesel consumer in the US transportation sector, making up ~8% of total diesel use

Transportation Sector Mode	Total Consumed (Trillion BTU's)	Percent of Total
Freight Trucks	4,917.6	75.1%
Rail Transportation	513.1	7.8%
Freight Rail	490.9	7.5%
Passenger Rail	22.2	0.3%
Waterways Shipping	453.7	7.0%
Light Duty Cars and Trucks	330.1	5.0%
Buses	186.4	2.9%
Military	96.0	1.5%
Recreational Boats	51.2	0.7%
Total Diesel Consumed	6548.1	100.0%
Source: Liva Tran	nsportation Sector Energy Use by Fu	uel Type Within a Mode, 2016

The Big Picture: Where is the energy consumption?

Largest U.S. Intermodal Rail Yard Locations

