

Hydrail: Moving Passengers Today and Freight Tomorrow

Rob Harvey Director, Energy Infrastructure

> H2@Rail Workshop Lansing, MI March 27, 2019

On a clear day you can see the future

Alstom's Coradia iLint—world's first hydrogen train now in service

China Railway Rolling Stock Corp (CRRC) Hydrail Trams

Commuter Hydrail Retrofit in the UK

The Business Case for Zero-Emission Passenger Hydrail based on the combined Rolling Stock and Energy Infrastructure TCO

Diesel Fueling Infrastructure

Mature Energy Supply Chain Operator Storage and Dispensing

Overhead Catenary System Operator builds entire system catenary wires, traction power system and grid interconnection **Hydrogen Fueling Infrastructure** Build-out H2 Prod'n and Distribution Operator Onsite Hydrogen Storage and Dispensing

Passenger Hydrail vs. OCS Electric

- Lower upfront Capex and lower TCO over time
- Avoids roadwork disruptions and utility relocates for faster implementation and revenue capture
- Greater operational flexibility by providing service
 on both diesel and electrified lines
- Scalable solution as capacity can be added to meet ridership growth over time
- Avoids negative aesthetics and visual impact of overhead wires in urban areas
- Hydrail rolling stock costs and fueling infrastructure
 will decrease dramatically over next decade

Global Leader in Hydrogen Technology

Hydrogenics PEM Fuel Cell Module

Fuel cells use hydrogen to create electricity for mobility and critical power applications

Safety & Predictive Maintenance

- Design based on FMEA (Failure Mode and Effects Analysis)
- Multi-function stack end plate
- Integrated manifold
- Hardware safety
 - Temperature, Pressure connect to the H2 inlet solenoid
- Predictive maintenance and improved system availability
- Advanced onboard controls and diagnostics
 - Self-check can give a stack health report after each run
- Shock & vibration system tolerance

Multi-function stack end plate

Fuel delivery assembly

Cell voltage graph

Fuel Cell Power Modules for Mobility Applications

30 kW

- PEM FC Power Module
- Fundamental Building Block
- Freeze-protected
- Integral Balance of Plant
- Ease of Integration

60 kW

- •CELERITY designed for heavy duty; ready connection with Siemens ELFA electric drive
- •Full feature set, including Pre-charge, Load contactor, reverse current protection, IP rated enclosure

120+ kW

- Multiple HD30 FC modules plus:
- Frame and enclosure
- Manifolding
- Single interface set
- 120/150/180/240kW+ variants

Powering Planes, Trains, and Buses and Trucks

Coradia iLint HyPM[™] Design and Delivery Schedule

Date	Design and Delivery Schedule:
2014-09	LOI signed by 4 German States
2015-09	1 st Prototype FC System delivered
2016-09	Unveiling at Innotrans Exhibition, Berlin
2017-03	1 st two Pre-Series trains on track testing
2018-1H	Completion of Type Approval testing
2018-2H	Pre-series validation in revenue service

HyBalance Facility, Denmark Producing hydrogen for refueling stations and industrial customers

Markham Energy Storage Facility, Ontario Grid Balancing Services for IESO

5 MW

What's Holding Us Back for Commuter Hydrail?

- Industry is ready for commercial deployments for hydrogen rolling stock
 - Fuel Cell companies have been working directly with the rolling stock suppliers to develop the design and integration for several years now
 - Demonstration trials underway have validated design and performance characteristics
- Scaling of hydrogen fueling infrastructure capacity
 - Hydrogen production and distribution scale exists for refineries today
 - Electrolysis is established technology, but larger scale plants required for Hydrail
 - Required fueling dispensing volumetric and transfer rates are achievable with today's engineering capabilities
- Volume production
 - No technology limiting barriers, but component supply chain is immature today
 - Volume production needed to accelerate cost reductions over next decade
- Project financing and structures
 - Railway operators accustomed to 30+ year asset planning horizon and life
 - New hydrogen technology has higher risk than century old Overhead Catenary System

What about Hydrail Freight Trains?

Freight Hydrail Research Needs

- Operating range and hydrogen fueling infrastructure are constraints today
- On-board liquid hydrogen is feasible option as it would provide sufficient energy density for long-haul freight trains, but massive fueling infrastructure investment to support North American network
- Other fuel options are on-board liquid at ambient
 - Methanol
 - LOHC
 - Ammonia
- Let's not lose sight of the H2@Scale end goal

Courtesy photo from http://transportationcommunicationcanada.weebly.com/references.html

Rob Harvey Director, Energy Infrastructure

rharvey@hydrogenics.com

905-361-4587

