



# Impact of Hydrogen for Rail Applications

Brian Ehrhart, Lennie Klebanoff, Ethan Hecht, Alex Headley, Melissa Ng, Cheri Markt H2@Rail Workshop Lansing, Michigan March 27, 2019





Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.





# **Class I Railroad Priorities**

#### 1. Safety

- · Severe weather e.g. Hurricane Harvey
- Terrorism and Crime
- Personal Injuries
- Derailments

#### 2. Operational Efficiencies & Network Congestion

- Fuel efficiency
- Technology, real time status
- North America Shared Rail System

#### 3. Emissions Controls

- · Environmentally Responsible
- Carbon Emission Tax
- Coal Customers, higher tax or business loss
- Legal Claims
- Unpredictable Shipping Resulting from Government Incentives

Pareto Railway Priorities Mentioned in Annual Financial Reports



\* 7 Class I Railways + Amtrak

Class I focus on Safety, Operations, and Emissions Controls Where can hydrogen address these concerns?



**H\_FC**Hydrogen and Fuel Cells Program

# **Methodology: Impact Figure of Merit**

Applications considered:

- Freight
- Passenger
- Switcher

Technologies considered:

- Diesel
- Electric (catenary/third rail)
- Battery Electric
- Hydrogen (gaseous storage)
- Hydrogen (liquid storage)

Figure of merit allows for comparative ranking and illustrates drivers and trade-offs Figure of merit for each technology/application pair (bad) 0.0 – 10.0 (good)

# Some values estimated qualitatively, some calculated quantitatively

- 1. Topical figures of merit calculated
- 2. Weighted average of topical figures of merit leads to overall Impact Figure of Merit



# **Environmental Topics**

- Emissions of major pollutants per hour of operation
  - CO<sub>2</sub>, NOx, HCs, PM
- Calculations based on notchweighted fuel consumption <sup>1,2</sup>
  - Tier 4 diesel emissions standards<sup>3</sup>
  - California grid emissions assumed<sup>4</sup>
- Emissions differ by source of  $H_2^{5,6}$ 
  - Natural gas reformation
  - Electrolysis from grid energy
  - Renewable resources
  - Currently averaged in analysis
- Possible future considerations:
  - Fuel spills, end-of-life



1 Fritz, S.G., "Evaluation of Biodiesel Fuel in an EMD GP38-2 Locomotive" May 2004, NREL/SR-510-33436

2 Klebanoff, et al. "Comparison of the greenhouse gas and criteria pollutant emissions from the SF-BREEZE high-speed fuel-cell ferry with a diesel ferry" Transportation Research Part D 54 (2017) 250-268 3 40 CFR 1033.101, Table 2

4 EPA eGRID Summary Tables 2016

5 Edwards, et al., "Well-to-Wheels Analysis of Future Automotive Fuels and Powertrains in the European Context: Well-to-Tank Report," Version 4, Technical Report by the Joint Research Center of the European Commission, July 2013.

6 Stoner, et al., "Full Fuel Cycle Assessment Well to Tank Energy Inputs, Emissions and Water Impacts," California Energy Commission Report CEC-600-2007-002-D, 2007.

4



# **Acceptance Topics**

- Noise<sup>1</sup>
  - Not a large impact, mostly wheel noise
- Aesthetics <sup>2</sup>
  - Catenaries undesirable
- Public acceptance <sup>3</sup>
  - Public may be initially concerned about hydrogen nearby
- For future investigations:
  - Interface with other industries/markets
  - Smog and appearance

#### **Overall Acceptability Figures of Merit**



[1] D. H. Cato, Prediction of Environmental Noise from Fast Electric Trains, Journal of Sound and Vibration 46(4) 1976, pp. 483-500

[2] F. Calvo and A. Nash, Wireless Electric Propulsion Light Rail Transit Systems in Spain

[3] R. L. Schmoyer, Tykey Truett, and Christy Cooper, Results of the 2004 Knowledge and Opinions Surveys for the Baseline Knowledge Assessment of the U.S. Department of Energy Hydrogen Program, ORNL/TM-2006/417 (April 2006).



**H\_FC**Hydrogen and Fuel Cells Program

# **Safety Topics**

- Acute effects on public from fuel release due to leak or crash
  - Qualitative trend (Low, Med, High)
- Fire
  - Effect of fuel fire, hydrogen may have slightly larger effect
- Health
  - Acute health effects due to diesel emissions
- Electric
  - Exposure to electric track/catenary
- Pressure
  - Gaseous hydrogen







# **Performance Topics**

- Maintenance interval <sup>1, 2</sup>
- Energy/fuel efficiency
  - Notch-weighted
  - Hydrogenics HD-30, EMD GP38-2
  - Estimated increased efficiency at low power notches
- Weight
  - H<sub>2</sub>/tank ratios (6% GH<sub>2</sub>, 20% LH<sub>2</sub><sup>3</sup>)
  - Negative impact (decrease in range)
    - Can improve traction for freight
- Volume
  - Density of "fuels"
    - Electric track does not have "fuel"
  - Electrified rail based on Toshiba power conversion unit for rail
- Refueling time and system life
   considered for future work



[1] G. Marin, G. Naterer, and K. Gabriel, "Rail transportation by hydrogen vs. electrification–Case study for Ontario Canada, I: Propulsion and storage," *International Journal of Hydrogen Energy*, vol. 35, no. 12, pp. 6084-6096, 2010.
[2] R. Nunno. (2018). *Electrification of U.S. Railways: Pie in the Sky, or Realistic Goal?* <u>https://www.eesi.org/articles/view/electrification-of-u.s.-railways-pie-in-the-sky-or-realistic-goal</u>

[3] J. Hogerwaard and I. Dincer, "Comparative efficiency and environmental impact assessments of a hydrogen assisted hybrid locomotive," *International Journal of Hydrogen Energy*, vol. 41, no. 16, pp. 6894-6904, 2016.

#### **Overall Performance Figures of Merit**



# **Economic Topics**

- Capital Costs
  - New fueling stations
  - New track (for electric rail)
  - New Power Plants (Freight on Grid)
- Operating Costs
  - Cost of fuel, labor hours to fuel
  - Maintenance costs
- Transition Costs
  - Fragmented track compatibility
  - Partial fueling station availability
  - New locomotive vs. Modification
- How to estimate large volume cost for hydrogen fuel?
  - Will depend on supply/demand with other industries

#### **Overall Economic Figures of Merit**



Current spend on diesel used as baseline More detailed implementation plans for H2 will support refinement of cost estimate





Impact Figure of Merit

(Scale of 0.0 to 10.0)

# **Combining Figures of Merit**

- Figures of merit summarize comparison about underlying trends
  - Scale can be simple, inverse, exponential, qualitative, etc.
- Currently, all weighting is equal for combining figures of merit
  - Combining individual topics into categories
  - Combining topics into overall figure of merit
- Different locations, regions, jurisdictions will have different preferences







# **Findings So Far**

- Methodology is being created to examine the potential beneficial impact of hydrogen fuel cells for rail applications
  - Areas of analysis are economic, environmental, performance, acceptability, and safety
- Preliminary results show trade-offs between all technologies
  - More refinement and exploration needed, which will change rankings
- Emissions reduction benefit from hydrogen depends on the source of hydrogen
- Reliability of hydrogen locomotives needs to be investigated
  - Impacts performance and economics
- Fueling infrastructure needs to be investigated further
- Safety needs to be investigated further





### **Future Work**

- Improve impact figures of merit
  - Many current preliminary results are qualitative
  - Identify what data exists, and what further study is needed
  - We want your feedback!
- Regional figure of merit
  - Identify 3 regions in the USA that match well to high impact figure of merit for hydrogen for rail
  - Examine impact/value of:
    - Electricity grid mixes
    - Amounts of different types of rail usage
    - Emissions displacement
- Liquid hydrogen refueling technology assessment
  - Assess technology, safety, codes and regulations, and feasibility for LH2 fueling of a locomotive



# **Leveraging Results from Maritime and Vehicles**

### Hydrogen for Maritime Applications

- Feasibility studies funded by DOT/MARAD
- SF-BREEZE high-speed hydrogen fuel cell ferry
  - 1,000+ kg/day hydrogen demand
- Zero-V hydrogen fuel cell coastal research vessel
  - 2,400 nautical mile range
  - Refueled with ~11,000 kg of LH2
- High capacity fueling also needed for rail
- Leveraging emissions displacement calculations



**H**,**F**(Hydrogen and Fuel Cells Program



### Hydrogen Vehicle Refueling Station Reference Designs

- Gas and liquid hydrogen systems
- Identification of improvements for dispensers





# **Extending Safety Analysis to Rail Applications**

What can go wrong, how likely it is, and what could happen

- Hazard and frequency/probability analyses
  - Vehicles in tunnels
  - Safety codes and standards for vehicles and infrastructure
- Consequence analyses
  - Vehicles in tunnels
  - Maritime vent stack
  - Liquid H2 release model development











Thank you!

# **QUESTIONS?**





# **BACK-UP SLIDES**





# **Impact Figure of Merit Framework**

- **Goal:** Develop impact figure of merit (IFM) to evaluate the benefits of hydrogen fuel cell technology in rail use
  - Formulation that assesses impact in many areas (economic, environmental, safety, performance, acceptability)
  - Framework for identifying applications with the largest IFM for hydrogen relative to traditional and competing locomotion
  - Enable identification of IFM drivers to determine where more information is needed and/or largest impact is possible
- Disclaimer: Any individual project, application, or design can differ greatly from high-level trends
  - This analysis focuses on comparative trends for overall technologies and applications
- All results are preliminary and meant to solicit discussion and feedback; we want to hear from you!





# **Critical Needs**

- Usage data for all three rail applications
  - Freight-miles, passenger-miles, train-miles
  - Different areas of the country
- Duty cycles for all three rail applications
  - Power output, fuel consumed, profile over time
  - Multiple examples to show variability
- Source of power for electric trains? New power plant additions?
- Source/method of obtaining fuel
- Pricing of diesel vs electricity and H2 fuel at scale
- Effect of public perception on rail policy by region





# **Different Methods of Scaling**

| Figure of<br>Merit | Qualitative |        | Linear | Logarithmic      |
|--------------------|-------------|--------|--------|------------------|
| 10                 | High        | Better | 100    | 10 <sup>5</sup>  |
| 9                  |             |        | 90     | 104              |
| 8                  |             |        | 80     | 10 <sup>3</sup>  |
| 7                  |             |        | 70     | 10 <sup>2</sup>  |
| 6                  |             |        | 60     | 10 <sup>1</sup>  |
| 5                  | Medium      | Same   | 50     | 10 <sup>0</sup>  |
| 4                  |             |        | 40     | 10 <sup>-1</sup> |
| 3                  |             |        | 30     | 10-2             |
| 2                  |             |        | 20     | 10 <sup>-3</sup> |
| 1                  | Low         | Worse  | 10     | 10-4             |





# **Railway Focus Areas**

- Amtrak, 1 Railroad
- 350 locomotives
- 21k miles of track
- City:City Passengers
- Class II, 10 Railroads
- Class III, 557 Railroads
- 6k locomotives
- 40 yrs Average Age
- 45k miles of track
- City:Rural Freight



- Class I, 7 Railroads
- 30k Locomotives
- 20 yrs Average Age
- 120k miles of track
- City:City Freight

- Class I, 7 Railroads
- 1.4k Locomotives
- 40 yrs Average Age
- 48k miles of track
- Switching Yard Freight

Class I: Annual carrier operating revenues of \$452M Class II: Annual revenues between \$20M and \$452M

<sup>19</sup> Class III: Annual revenues less than \$20M

Values collected from investor disclosure statements



# **Different Methods of Calculating Figures of Merit**

### Environmental

- Quantitative scaled calculations of pollutants
- Example: powering freight rail
  - Calculate pollutant release rate
    - Well-to-wheels: includes production/delivery and use
    - For freight duty cycle
  - Determine pollutant impact factors
    - Preserves comparative relationship
    - Assign best value to 10.0
    - Example calculation on next slide
  - Overall Environmental FoM is average of these values for the 4 pollutants considered

### Safety

• Qualitative estimates of potential effects

**H**,**F**(Hydrogen and Fuel Cells Program

- 1 = High
- 5 = Medium
- 10 = Low
- Example: GH2 for freight
  - Fire: medium-high (3)
    - Jet fire from leak or crash
  - Health: low (10)
  - Electric: low (10)
  - Pressure: medium-low (7)
    - Pressurized hydrogen
  - Overall Safety FoM is average
    - (3+10+10+7)/4 = 7.5



# **Different Methods of Calculating Figures of Merit**

#### First Consider the Quantitative Environmental Emissions

- Quantitative calculations of pollutant emissions (CO<sub>2</sub> (eq.), NO<sub>x</sub>, HC, PM)
- Consider each type of application in turn (freight, passenger, switch)
  - Calculate pollutant release rate (kg/hr)
    - Adopt a duty cycle (percentage of time spent on each Notch and in Dynamic Brake and Idle) for the particular application.

**H**,**F**(Hydrogen and Fuel Cells Program

- Comprehensive Well-to Wheels Analysis that includes production, delivery and use of energy
- Determine pollutant impact factors for each application (freight, passenger, switch), for each technology (diesel, catenary electric, H<sub>2</sub> fuel cell, etc.) for the 4 pollutants based on quantitative calculation of the WTW pollutant release rates.
- Design impact factors (IFs) such that the best performing technology is given a 10 score, and all other (lower) IFs for that pollutant reflect the correct relative emissions for the different technologies for the particular application.

Step 1: For each pollutant species, identify the largest emission. Then divide this largest emission by the other emission values. This produces large numbers for low emission paths.

Step 2: Take each Step 1 number, divide by the largest Step 1 number (most benefit) amongst the technologies, then multiply by 10.0. This give you the impact factor (IF) for that technology, for that pollutant, on the desired 0 - 10 scale where 10 is the most benefit.





10

# For Example: Freight (Line-haul) Application

|                                  | X                              | y = 901.312/x                         | IF <sub>CO2</sub> = [y/31.60          | )] X [ |
|----------------------------------|--------------------------------|---------------------------------------|---------------------------------------|--------|
| Technologies                     | CO <sub>2</sub> (eq.)<br>kg/hr | STEP 1 CO <sub>2</sub> (eq.)<br>kg/hr | Step 2 CO <sub>2</sub> (eq.)<br>kg/hr |        |
| Diesel                           | 463.300                        | 1.945                                 | 0.615                                 |        |
| FC NG LH <sub>2</sub>            | 482.559                        | 1.867                                 | 0.591                                 |        |
| FC Electrolysis LH <sub>2</sub>  | 901.312                        | 1                                     | 0.316                                 |        |
| FC Renewable                     | 36.679                         | 24.572                                | 7.776                                 |        |
| Cat. Electric                    | 209.411                        | 4.304                                 | 1.361                                 |        |
| Battery Only                     | 246.267                        | 3.659                                 | 1.158                                 |        |
| FC NG H <sub>2</sub> 350 bar     | 375.238                        | 2.401                                 | 0.760                                 |        |
| FC Elect. H <sub>2</sub> 350 bar | 700.860                        | 1.286                                 | 0.406                                 |        |
| FC Ren. H <sub>2</sub> 350 bar   | 28.521                         | 31.600                                | 10                                    |        |

For each technology, determine an overall emissions IF: = (IF<sub>CO2</sub> + IF<sub>NOX</sub> + IF<sub>HC</sub> +IF<sub>PM</sub>) /4)





## **Environmental Figures of Merit Details**



**Environmental Figures of Merit** 

Direct Emissions: CO2 Direct Emissions: NOx Direct Emissions: PM





# **Economic Figures of Merit**

**Economic Figures of Merit** 







# **Acceptance Figures of Merit Details**

Acceptability Figures of Merit







# **Safety Figures of Merit Details**

Safety Figures of Merit







## **Performance Figures of Merit Details**

Performance Figures of Merit



27





# **Liquid Hydrogen Fueling**

- Two aspects with cryogenic liquid transfer:
  - 1. Chilling of transfer lines and tanks
  - 2. Boil-off (to vent) of dormant liquid hydrogen
- LH2 used by NASA for decades
  - Pre-cool for 3 hours, then transfer 340,000 gal LH2 in 90 minutes (maximum 10,000 gpm)<sup>1</sup>
- Recent work by Guillaume Petitpas, et al. (LLNL) on light-duty vehicles and refueling stations<sup>2</sup>
  - LH2 transfer code released open source<sup>3</sup>
  - More frequent fills reduces boil-off
  - Re-capture of boil-off possible, may be economical depending on use
- NFPA 2 Hydrogen Technology fire code may apply to refueling stations

<sup>2</sup> G. Petitpas, A.J. Simon, J. Moreno-Blanco, S.M. Aceves (2018) DOE Hydrogen and Fuel Cells Annual Merit Review, Washington D.C.

<sup>3</sup> <u>https://github.com/LLNL/LH2Transfer</u>

<sup>&</sup>lt;sup>1</sup> Wybranowski E. (1972) Advances in Cryogenic Engineering. vol 17





# **Class I: \$15B Capital Investments 2018**

#### 1. Safety

- Severe weather e.g. Hurricane Harvey
- Terrorism and Crime
- Personal Injuries
- Derailments

#### 2. Operational Efficiencies & Network Congestion

- Fuel efficiency
- Technology, real time status
- North America Shared Rail System
- 3. Emissions Controls
  - Environmentally Responsible
  - Carbon Emission Tax
  - Coal Customers, higher tax or business loss
  - Legal Claims
  - Unpredictable Shipping Resulting from Government Incentives

#### Positive Train Control System (PTC)

- 2008 Rail Safety Improvement Act
- Varying degrees of completion

#### Main Line Track Upgrade

- 1980 Increased weight limit from 263k-lbs to 286k-lbs
- Class I complete
- Class II & III varying degrees of completion

#### Exploring Clean Energy Options – Next Steps...

- Diesel
- Electric, Third Rail or Battery
- Hydrogen, Liquid or Gas

#### Class I Collaborative Capital Investments in Safety and Operations, now Emissions Controls





### **Class II & III: Transition From Class I to Independent Railways**

#### **Staggers Rail Act of 1980**

- Encouraged Class I to sell, not abandon short line service to originate and terminate goods in rural America
- · Difficult to restore a line after being shut down

#### **Federal Financing**

- Railroad Rehabilitation and Improvement Financing (RRIF) Program- Loan Program 1998
- Transportation Infrastructure Generating Economic Recovery (TIGER)- Grant Money 2009
- Section 45G Tax Credit 2004

#### **State Financing**

- Loan and Grant Programs: Idaho, Kansas, New Jersey, New York, Ohio, Oregon, Pennsylvania, Virginia, Wisconsin
- Tax Benefits: Connecticut, Massachusetts, New Jersey, New York, North Carolina, Pennsylvania, Virginia

#### Consolidation Under Holding Companies to Improve Bank Financing

- 50% Short Line Railways have been acquired by holding companies
- 297 Short Line Railways remain independent
- 122 Short Line Railways owned by Genesee and Wyoming
- 27 holding companies total, 567 Short Line Railways total

#### Class II & III are now independent railways and rely on Government Financing





### **Class II & III Railway and** Federal, State, Local Government Priorities

#### 1. Safety

- Severe weather e.g. Hurricane Harvey
- Terrorism and Crime
- Personal Injuries
- Derailments

#### 2. Operational Efficiencies & Network Congestion

- Fuel efficiency
- · Technology, real time status
- North America shared rail system

#### 3. Emissions Controls

- Environmentally responsible
- Carbon emission tax
- Coal Customers, tax or business loss
- Legal claims
- Unpredictable shipping resulting from government incentives

#### **Competition with Highway Trucking**

- 4. Maintain Balanced Transportation System
  - Reduce highway maintenance cost
  - Environmentally Sustainable

#### 5. Boost the Economy

- Increase employment, wages
- Increase business earnings
- Increase farm and business opportunities in rural areas
- Increase local business volume
- Reduce transportation costs for shippers
- Reduce highway user cost, traffic

#### Class II & III share Class I Priorities + Government Priorities





### **Amtrak**

#### 1. Safety

• Derailments and Personal Injuries

#### 2. Emissions Controls

- Coastal North East Corridor at high risk for flooding
- Carbon Emissions
- Severe Weather, Extreme Temperatures

#### 3. Emergency Management Resource

Integral to evacuation plans in case of natural disaster

#### 4. Passenger Amenities

- Complementary WiFi
- Checked Bicycle Service
- Pet Program
- Spacious seating, Beverages

#### 5. Boost Economic Opportunities

Serve communities without intercity bus and airline service

#### **Federally Chartered Corporation**

- Created by Congress 1970, take over of unprofitable intercity passenger rail service
- Federal Passenger Rail Investment and Improvement Act (PRIIA)
- Funding from 18 states and 21 agencies

#### Competition with Airlines, Bus, Private Vehicles

• 28 new high speed rail locomotives under contract

Amtrak aligns with Government priorities and caters to passengers Face short term flooding at coastal regions and considered a critical asset to emergency evacuation plans





### **Efficiency Curves for Diesel and Hydrogen**



Modular fuel cells allow for higher efficiency at lower power ratings