BNSF’s Alternative Fuels
H2@Rail Conference

Michael Cleveland
SENIOR MANAGER EMERGING TECHNOLOGY
MARCH 27, 2019
Overview

• BNSF Railway Overview

• Hydrogen Switcher

• Liquefied Natural Gas

• Battery Electric Equipment Development
 – Battery Electric Locomotive

• Key Hydrogen Challenges for Rail
BNSF Railway Overview

- **32,500** route miles in **28** states and **3** Canadian provinces
- **43,000+** employees
- Operates **~1,500** trains per day
- Serves over **40** ports and **25** intermodal facilities
- Over **10 million** carloads shipped annually
Hydrogen Switcher

- Partnership between BNSF, Vehicle Projects, & US Army
- Built at BNSF’s Topeka shops
- Tests run 2008 - 2009
Liquefied Natural Gas

• BNSF evaluated natural gas as an alternative locomotive fuel in revenue service operations from 2013 to 2017

• Equipment:
 – 2 tank car style tenders
 – 4 total HHP locomotives
 • (2 EMD & 2 GE)

• Partnered with industry to develop AAR M-1004 tender standard
Battery Electric Equipment Development

Equipment Types:

• Battery electric locomotives
 • Line haul: hybrid battery electric consist
 • Switcher locomotives (concepts, previous projects & other roads)

• Intermodal equipment
 • Battery electric drayage truck
 • Hybrid rubber-tired gantry (RTG) cranes
 • Battery electric side loader
 • Battery electric hostler trucks

Grant: Zero- and Near Zero-Emission Freight Facilities (ZANZEFF)

• CARB funding in partnership with SJVAPCD
GE Transportation’s
Battery-Electric Locomotive

Massive power generation capabilities up to 2400 kWhrs
Huge fuel savings of at least 10-15%
Hybrid Consist Demonstration

Mainline Operating Mode
- Revenue service operation between Stockton and Barstow
- Hybrid consist mode
 - Regenerative braking for battery charging
 - Trip optimizer integration
- Targeted fuel and emissions reduction

Yard Operating Mode
- Within Stockton yard
- Yard consist and train arrival/departure movement powered by battery-electric locomotive only
- Near-zero emissions operation
- Diesel locomotives in consist will idle or shut down

Battery: ~2400 Kwh
Hybrid Consist Development Goals

Develop system architecture and sub-components

- Hardware Development
 - Electrical system, battery integration, wayside charging, controls system, etc.
- Software Development
 - Intra-consist communication, Trip Optimizer integration, route optimization, etc.
- Operational Integration
 - Consist management, battery state of charge impact, locomotive utilization, train handling impact, maintenance and repair, etc.

Validate fuel savings and operational performance

- Pilot efforts allow for testing of differing locomotive services. Ideal services have heavy dynamic use.
- Modeling and projections suggest performance to grow with technology advancement.
Key Hydrogen Fuel Challenges for Rail

- **Safety**
 - Compressed or cryogenic fuel handling
 - Flammability of gaseous fuels
 - LFL 4% to UFL 75% mixture with air

- **Energy density**
 - Long distances require energy dense fuels
 - LA to Chicago Gulf to Pacific Northwest Unit train service
 - Mitigation requires additional/larger equipment

- **Infrastructure investment**
 - Large, decentralized physical foot print
 - Refueling facilities across network
 - Cryogenic liquid or compressed gas equipment is complex & costly
 - Onsite hydrogen generation adds equipment & cost