Total Cost of Ownership for Line Haul, Yard Switchers and Regional Passenger Locomotives – Preliminary Results

Argonne National Laboratory

S. Chan and P. Devlin
Fuel Cell Technologies Office
U.S. Department of Energy

H2@Rail Workshop
March 26-27, 2019
The James B. Henry Center for Executive Development
Lansing, MI

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Total Cost of Ownership (TCO)

Freight and Regional Passenger Locomotives ($/mile)
- Lifetime cost of locomotive, maintenance/refurbishment and fuel levelized over total miles travelled

Yard Switcher Locomotives ($/h)
- Lifetime cost of locomotive, maintenance/refurbishment and fuel levelized over total service hours

TCO for 30-y locomotive service life, 15-y engine lifetime, and $3/gal diesel fuel

<table>
<thead>
<tr>
<th></th>
<th>Freight</th>
<th>Regional</th>
<th>Switcher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locomotive Lifetime</td>
<td>3,600,000 miles</td>
<td>4,800,000 miles</td>
<td>138,000 h</td>
</tr>
<tr>
<td>Engine (HP)</td>
<td>4,400</td>
<td>3,600</td>
<td>1,500</td>
</tr>
<tr>
<td>Fuel Tank Capacity (gal)</td>
<td>5,000</td>
<td>2,000</td>
<td>2,000</td>
</tr>
<tr>
<td>Fuel Consumption</td>
<td>0.40 mpg</td>
<td>0.49 mpg</td>
<td>9.5 gal/h</td>
</tr>
<tr>
<td>Total Locomotive Cost ($)</td>
<td>3,000,000</td>
<td>2,500,000</td>
<td>1,350,000</td>
</tr>
<tr>
<td>Maintenance Cost ($/year)</td>
<td>125,000</td>
<td>125,000</td>
<td>75,000</td>
</tr>
<tr>
<td>Overhaul Lifetime Cost ($)</td>
<td>300,000</td>
<td>250,000</td>
<td>175,000</td>
</tr>
<tr>
<td>Fuel Cost</td>
<td>7.50 $/mile</td>
<td>6.12 $/mile</td>
<td>28.05 $/mile</td>
</tr>
<tr>
<td>Levelized Cost</td>
<td>9.46 $/mile</td>
<td>7.48 $/mile</td>
<td>55.41 $/h</td>
</tr>
</tbody>
</table>

- Freight and regional locomotives: Fuel accounts for ~80% of TCO. Besides engine reliability and availability, fuel economy and cost are extremely important.
- Switcher locomotives: Fuel accounts for 55% of TCO. Capital, maintenance & refurbishment, and fuel costs are important.
System costs projected using 90-kW$_e$ automotive style stacks, 2 stacks/module, 2 modules for 360-kW$_e$ heavy-duty vehicles (HDV)*

Current PEM systems (285/kW$_e$)
- Pt or Pt alloy cathode electrodes with 0.35 mg/cm2 Pt loading, 400-kW$_e$ gross power, assembled at low production volumes (100 HDV systems/year)

Interim PEM systems (130/kW$_e$)
- Same configuration as current systems, cost savings due to higher production volumes (5,000 HDV systems/year)

Ultimate PEM systems (60/kW$_e$)
- Cost savings from higher production volumes (>100,000 HDV systems/year) and technology advancements (higher activity catalysts with lower Pt loading, improved air management system)

*Strategic Analysis, Fuel Cell System Analysis, Fuel Cell Tech Team Meeting, 20 February 2019
Fuel Economy (FE) on EPA Duty Cycles

FE Multiplier (FEM): Ratio of FCS to diesel fuel economy

- Freight duty cycle: Significant fuel consumption at high notch levels where diesel is most efficient, FEM = 1.1
- Regional duty cycle: Frequent start-stops, actual cycle depends on service route, FEM = 1.2*
- Yard-switcher duty cycle: Significant fuel consumption at idle and low notch levels where FCS has distinct advantages, FEM = 1.7

*Alstom Lint (Coradia Specs, Ludwig-Bölkow-Systemtechnik GmbH, 12th International Hydrail Conference, Graz, 27-28 June, 2017)
Cryo-Compressed Hydrogen (CcH₂) Storage System for Freight and Regional Locomotives

Freight Locomotives: One tender car needed, 4850 kg-H₂ stored at 500 bar, 70 K
- 93 m³ and ~48.5 tonne required storage volume and weight for ~10 wt% gravimetric and 50 g/L volumetric capacities

Regional Locomotives: Tender car not needed, if 2 refuelings/day, 500-kg stored H₂

Liquid H₂ tender in lieu of CcH₂ tender also needs to be investigated

350-bar Compressed Hydrogen (cH₂) Storage System for Switcher Locomotives

Tender car not needed for 100 kg-H₂ stored at 350 bar, room temperature
- 5 m³ required storage volume for 6-7 wt% gravimetric and ~19 g/L volumetric capacities

Projected CcH₂ Storage System Costs
- **Current PEM**: $1130/kg-H₂ (200 HDV systems/year)
- **Interim PEM**: $500/kgkg-H₂ (5000 HDV systems/year)
- **Ultimate PEM**: $266/kg (DOE target)
Dispensed Hydrogen Cost

- AC Transit, CA: 13 buses, 2 stations, liquid H₂ delivery / electrolysis
- Sunline, CA: 10 buses, on-site SMR, new station electrolysis based
- OCTA, CA: 1 bus, H₂ purchased from local retail stations
- SARTA, OH: 7 buses, liquid H₂ delivery
- Fuel cost: $9/kg-H₂ (current), $7/kg-H₂ (interim), $4/kg-H₂ (ultimate)

<table>
<thead>
<tr>
<th>Agency</th>
<th>AC Transit¹</th>
<th>SunLine²</th>
<th>OCTA³</th>
<th>SARTA⁴</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data period</td>
<td>2/13-7/17</td>
<td>3/12-10/18</td>
<td>3/16-12/18</td>
<td>2/18-12/18</td>
</tr>
<tr>
<td>Number of months</td>
<td>54</td>
<td>80</td>
<td>34</td>
<td>11</td>
</tr>
<tr>
<td>Average H₂ cost, $/kg</td>
<td>8.39</td>
<td>10.17</td>
<td>13.95</td>
<td>5.14</td>
</tr>
<tr>
<td>Maximum H₂ cost, $/kg</td>
<td>10.26</td>
<td>26.02</td>
<td>16.99</td>
<td>5.88</td>
</tr>
<tr>
<td>Minimum H₂ cost, $/kg</td>
<td>6.49</td>
<td>2.53</td>
<td>12.99</td>
<td>5.00</td>
</tr>
<tr>
<td>Overall FCEB fuel cost, $/mile</td>
<td>1.41</td>
<td>1.82</td>
<td>1.47</td>
<td>1.03</td>
</tr>
<tr>
<td>Baseline technology</td>
<td>Diesel</td>
<td>CNG</td>
<td>CNG</td>
<td>CNG/diesel hybrid</td>
</tr>
<tr>
<td>Average fuel cost, $/gal or gge</td>
<td>2.43</td>
<td>0.96</td>
<td>1.15</td>
<td>1.89 / 2.30</td>
</tr>
<tr>
<td>Overall baseline fuel cost, $/mile</td>
<td>0.57</td>
<td>0.32</td>
<td>0.32</td>
<td>0.45 / 0.51</td>
</tr>
</tbody>
</table>

Fuel cost is based on data provided by agencies, not all are equal comparisons

¹Delivered cost
²Includes station O&M
³Retail cost from local public stations
⁴Delivered cost

Leslie Eudy, Summary of Fuel/Energy Costs for NREL Evaluation Projects, NREL ZEB Technology Showcase and Symposium, February 6, 2019
Fuel Cell System Maintenance Cost

Average long term or life-cycle maintenance costs

- Diesel electric locomotives: 1-1.5 $/mile (Prices and costs in the railway sector, J.P. Baumgartner, 2001, LITep)
- Diesel electric locomotives: $125,000/year (California Air Resources Board)
- Diesel electric locomotives: 30-40% maintenance cost due to engine (Ephraim, M. Maintenance and Capital Costs of Locomotives, Electro-Motive Division, GM)

FCS vs. diesel engine relative maintenance cost from FCEB data: 1.67 (current)

- Majority of issues with FCS are due to balance of plant and not stack: air handling, blowers, cooling pumps, plumbing

Summary of FCEB Data through February 2018

<table>
<thead>
<tr>
<th></th>
<th>2017 Fleet Average</th>
<th>2018 Fleet Max</th>
<th>2018 Fleet Average</th>
<th>2016 Target</th>
<th>Ultimate Target</th>
<th>Target Met</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus lifetime (years)</td>
<td>4.7</td>
<td>7.5</td>
<td>5.5</td>
<td>12</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Bus lifetime (miles)</td>
<td>118,989</td>
<td>189,168</td>
<td>128,656</td>
<td>500,000</td>
<td>500,000</td>
<td></td>
</tr>
<tr>
<td>Powerplant lifetime (hours)</td>
<td>13,801</td>
<td>27,330</td>
<td>13,041</td>
<td>18,000</td>
<td>25,000</td>
<td>2016</td>
</tr>
<tr>
<td>Bus availability (%)</td>
<td>76</td>
<td>90</td>
<td>71</td>
<td>85</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Roadcall frequency (bus)</td>
<td>4,710</td>
<td>4,715</td>
<td>4,516</td>
<td>3,500</td>
<td>4,000</td>
<td>Ultimate</td>
</tr>
<tr>
<td>Roadcall frequency (fuel cell system)</td>
<td>20,705</td>
<td>23,741</td>
<td>18,026</td>
<td>15,000</td>
<td>20,000</td>
<td>Ultimate</td>
</tr>
<tr>
<td>Maintenance cost ($/mi)</td>
<td>1.03</td>
<td>0.56</td>
<td>0.53</td>
<td>0.75</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>Fuel economy (mpdje)</td>
<td>6.51</td>
<td>7.82</td>
<td>7.01</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Range (miles)</td>
<td>247</td>
<td>357</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td></td>
</tr>
</tbody>
</table>

A challenging application for fuel cells because ~75% of fuel is consumed in freights at notches 6, 7 and 8 where diesel engines are most efficient

- Projected gain in fuel economy is ~10% for fuel cells
- **Break-even delivered hydrogen cost relative to $3/gal diesel: $3.30/kg**

Other factors that may favor fuel cells

- Stricter emission standards for diesel locomotives
- More expensive diesel fuel: EIA projects increase of 21% by 2030 and 27% by 2035
- Carbon credits and if hydrogen is produced from renewables
Preliminary Total Cost of Ownership
Fuel Cell Regional-Passenger Locomotives

Preliminary TCO of fuel cells slightly more suitable for regionals than freights

- Higher gain in fuel economy (1.2x vs 1.1x) because the metropolitan duty cycle includes frequent stops and low speeds
- With 2 refueling/day, only 500-kg H\textsubscript{2} storage is required and can be accommodated without a tender car if H\textsubscript{2} stored as cryo-compressed gas. May also be feasible to eliminate the tender car with 350-bar cH\textsubscript{2} storage system.
- **Break-even delivered hydrogen cost relative to $3/gal diesel: $3.60/kg**
Preliminary Total Cost of Ownership
Fuel Cell Yard-Switcher Locomotives

Preliminary TCO of fuel cells more favorable for yard switchers than freights or regionals
- 70% higher fuel economy than diesels on EPA duty cycles for switchers
- On TCO basis, fuel cells can be >15% cheaper if they are developed to meet the ultimate performance and cost targets and if hydrogen is delivered at $4/kg
- **Break-even delivered hydrogen cost relative to $3/gal diesel: $5.60/kg**
- No loss of functionality as in a hybrid with an undersized 300-hp diesel engine
Summary and Outlook

Preliminary TCO of fuel cells more favorable for yard switchers than freights and regionals
- Future targets favor a 1000-kWₑ fuel-cell dominant hybrid with 160 kWh battery
- 70% lower fuel consumption than diesels on EPA duty cycles
- On TCO basis, fuel cells can be >15% cheaper if they are developed to meet the ultimate performance and cost targets and if hydrogen is delivered at $4/kg

Break-even delivered hydrogen cost relative to $3/gal diesel
- Freight locomotives: $3.30/kg
- Regional passenger locomotives: $3.60/kg
- Yard switcher locomotives: $5.60/kg

Hydrogen storage for locomotives
- Fuel tender car with liquid hydrogen refueled CcH₂ storage system for freight locomotives: 4,800 kg stored H₂, 80 kg/min refueling rate for 1-h refueling time
- CcH₂ or 350-bar cH₂ storage for regional locomotives, 500 kg stored H₂
- 350-bar cH₂ storage for yard switcher locomotives, 100 kg stored H₂

Areas for further development
- MEA durability exceeding 1.8-2.4 million miles for freights and regionals, 70,000 h for yard switchers
- Availability and reliability of FCS BOP components including air management
- May be desirable to develop single stacks >250 kWₑ
- Methods for meeting and exceeding the critical target of $4/kg-H₂ at pump