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Fuel Cell Systems for Data Centers

Challenges

e eBay’s Data Center in Utah loses $6,000 per second of
downtime

e The company’s sustainability mission was in conflict
with UT’s electric grid which sources 80% of it’s

electricity from coal

Solution

e 6 MW of fuel cell systems provide primary, onsite,
reliable power matched to the operational requirements
of the data center

e System provides 100% of electricity demand while
drastically reducing carbon footprint

e Redundant, modular architecture provides highly
reliable power

e System architecture replaces large, expensive &
polluting backup generators and UPS components
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Microsoft STARK Concept

 |In-rack Distributed Generation
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Microsoft STARK Concept

In-Rack Distributed Generation

* Adirect generation method that places fuel cells at the rack level
inches from servers
— limits the failure domain to a few dozen servers

- Low voltage DC direct connection enabled

-~ Equipment such as power distribution units, high voltage transformers,
expensive switchgear, and AC-DC power supplies in servers could be
eliminated

* Hybrid fuel cell systems designed, installed and tested

— Use of a 10kW PEMFC stack and system as the distributed power source to
power a server rack

— Use of a 2.5 kW SOFC stack and system as the distributed DC power source
to power a server rack
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Direct DC Powering of Servers
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PEMFC Stack and System Performance
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Fuel Cell

Battery
Power (kW)

Hydrogen Flow

PEMFC Stack and System Server Dynamics
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Microsoft STARK Concept

(A) Traditional Data Center

(with U.S. Grid Average Efficiency, 2011)

D S
4714 KW Grid —17.5%
Generation
571.4 kW Losses
fuel
to the 16 kW T&D
18 kW UPS
Power Plant Losses 5 kW Lighting

200 KW 184 KW to the 561 kW to Cooling
Generated Data Center

100 kW
to the Servers

PUE = 1.838

Fuel to Server Efficiency = 17.5%

Savings:

(1) energy conversion losses

(2) AC/DC converter elimination
(3) reduced cooling

100 kW

(B) PEMFC Powered 50.8 kW
Data Center Conversion Fuel Cell — 29.5%
Losses
T
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PEMFC Stack and System System Losses
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The power outputs of the 12kW in-rack PEMFC system under various external
loads. Error bars in the data indicate + one standard deviation from 5 different
measurements.
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Direct DC Power Dynamics

 What do we do before ubiquitous hydrogen infrastructure?
o Solid Oxide Fuel Cells — natural gas operation (three systems evaluated)
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SOFC Stack and System Steady-State Performance
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Characterized I-V relation
within the operating range.

Provide information on
overall data center design:
bus, power supply, DC/DC.

Electrical efficiency >52%
under standard operating
conditions.
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SOFC Stack and System Steady-State Performance

T

* Characterized the heat
rejected at various power
outputs.

—Cold Water

Flow
meter

Hot Water

* Provide information on
3.5 sizing of the cooling system
for data centers.

3.0
2.5 * Power to Heat Ratio over 1
> 2.0 at full load.
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SOFC Stack and System Transient Performance
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SOFC Stack and System Transient Performance

Current Applied to the Stacks
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SOFC Stack and System Cycling Performance
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SOFC Stack and System Cycling Performance

L Cycle#
1.4 =l Cycle#500 n

3 Cycle#1000

Stack 1 Power (kW)

e After over 1000 hours of

0.9 : : : : : i i
8] 100 200 300 400 500 600 dynamlc operation,
Time (s) Negligible power output
degradation observed.
1.5
L ] Cwycle#1
14 r + Cycle#500 |
= ¥  Cycle#1000
= 1.3 "
ad
3
a 1.2
Lo |
= 1.1
0
&n
1
0.9 ' ' : ' '
8] 100 200 300 400 500 600 @ —&
Time (s) </_ <\
®e)®
16/28 \7,_ &a/...{f
© Advanced Power and Energy Program 2019 (@—e)



Goal Must Be: 100% Zero Emissions

Envision this future, invest in its evolution

e ALL primary energy from sun, wind, wave, ...

* Use ONLY zero emissions electrochemical energy conversion to
complement
o Batteries
o Electrolyzers
o Fuel cells

* Use ONLY zero emissions energy carriers

o Hydrogen
o Renewable gases & liquids
(o —®
- . A\ e
j8
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Hydrogen Energy Storage Dynamics

 Compressed Hydrogen Storage complements Wind & City Power
Demand Dynamics in (Texas)
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* Load shifting from high wind days to low wind days
 Hydrogen stored in adjacent salt cavern

Maton, J.P., Zhao, L., Brouwer, J., Int’l Journal of Hydrogen Energy, Vol. 38, pp. 7867-7880, 2013

—
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Hydrogen Energy Storage Dynamics

 Weekly storage and seasonal storage possible with hydrogen and
fuel cells/electrolyzers — all zero emissions!
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Why we need H,: Amount of Storage Required

* Recent 1-Year Simulation of 100% Renewable Grid in CA
o Wind dominant case (37 GW solar capacity, 80 GW wind capacity)
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*Using existing natural gas resources for hydrogen storage

§ 21 million = total CA registered light duty vehicles; Nissan Leaf battery
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Why We Need H,: World Grid Energy Storage Need

Simulate meeting of TOTAL world electricity demand w/ Solar & Wind

* How much storage is needed?

. Consumption .
cnntsr?::ﬂtftion cnngill;?tion andrzi(;;age Cﬂﬂ(%tlﬂﬂ Storage (TWh)
Africa 0.70 0.30 8.39 9,123 1,088
America 0.45 0.55 7.83 38,5041 4,919
Asia 0.50 0.50 7.95 80,866 10,178
Europe 0.30 0.70 7.50 26,951 3,592
Oceania 0.50 0.50 7.95 1,625 205
TOTAL 157,106 19,981 TWh

[Nuria Tirado, M.S. Thesis, 2018]

e Batteries needed, but, they cannot do it all!

o Lireq'd=3,144 Mt

Coreq’d = 25,815 Mt

o Massive cost (connected power & energy scaling)

o Self discharge (measured performance in utility applications)

—
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Why We Need H,: Lithium-ion Batteries

Lit h i u m Primary al duction

* Resources: 53 Mt (USGS) | 3,144 Mt req’d rw. @}Q o
" Sizeofthe deposit 0@
o Economic | = |jthium content \

feasibility

— Content of other elements

~ Processes used for p

Rechargeable
hatteries

29%

25,815 Mt req’d
@\& | uUsG S) Figure extracted from USGS,

Cobalt

* Terrestrial resourr Q

e Ocean-floor r- \‘z
e 40% of cr’

o (©
« Q‘ -~ Better geologic models

o Impron «ed | Improved extraction methods
in cobalt wlely -~ Development of recovery processes

- Technological advances (deep-sea)

——
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Why We Need H,: Lithium-lon Batteries

Round-Trip Efficiency (>90% in Laboratory Testir @

* Measured battery system performance ir Q ‘ons
FIGURE 1-3: TOTAL ROUNDTRIP EFFICIENCY VERSUS CAPACITY FAC"' @
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e Self-D _.ne main culprit), plus cooling, transforming,
invertina .verting, and other balance of plant

Advanced Energy Storage Impacts, Itron, E3
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Brief Gedanken experiment

* First mix up to X% — tremendous boon to grid renewables

* Then piecewise conversion to pure hydrogen
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Pressure and Flow Dynamics

 With renewable gas injection at border (in desert)
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Pressure and Flow Dynamics

e 40% of all electric demand — 20 sq. miles of solar, onlv _.
use for H, storage and T&D

o Adv sy Program 2019 26/28 Oy



Brief Gedanken experiment

[ ] [ ] [ ]
* Piecewise conversion of gas system to pure hydrogen
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Thank You!
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