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Fuel Cell Systems for Data Centers

• eBay’s Data Center in Utah loses $6,000 per second of 
downtime

• The company’s sustainability mission was in conflict 
with UT’s electric grid which sources 80% of it’s 
electricity from coal

Challenges

• 6 MW of fuel cell systems provide primary, onsite, 
reliable power matched to the operational requirements 
of the data center

• System provides 100% of electricity demand while 
drastically reducing carbon footprint

Solution

• Redundant, modular architecture provides highly 
reliable power

• System architecture replaces large, expensive & 
polluting backup generators and UPS components

How it works
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Microsoft STARK Concept
• In-rack Distributed Generation
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Microsoft STARK Concept
In-Rack Distributed Generation
• A direct generation method that places fuel cells at the rack level 

inches from servers
– limits the failure domain to a few dozen servers
– Low voltage DC direct connection enabled
– Equipment such as power distribution units, high voltage transformers, 

expensive switchgear, and AC-DC power supplies in servers could be 
eliminated

• Hybrid fuel cell systems designed, installed and tested 
– Use of a 10kW PEMFC stack and system as the distributed power source to 

power a server rack 
– Use of a 2.5 kW SOFC stack and system as the distributed DC power source 

to power a server rack 
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Direct DC Powering of Servers
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PEMFC Stack and System Performance
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PEMFC Stack and System Server Dynamics

Cold startup time = 90s

t=30, hybrid system turned on

t=90, FC started purging 

t=120, FC met the load
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 (with U.S. Grid Average Efficiency, 2011)
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PEMFC Stack and System System Losses

The power outputs of the 12kW in-rack PEMFC system under various external 
loads. Error bars in the data indicate + one standard deviation from 5 different 

measurements.
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Direct DC Power Dynamics

• What do we do before ubiquitous hydrogen infrastructure?
o Solid Oxide Fuel Cells – natural gas operation (three systems evaluated)

Engen 2500

Natural gas

208VAC

120VAC

Cooling water out

Cooling water in

Reformer water

Exhaust

Forming gas

Condensate

2.5kW

Combustible gas detector

Ethernet cable 

Drain

Air
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SOFC Stack and System Steady-State Performance

• Characterized I-V relation 
within the operating range.

• Provide information on 
overall data center design: 
bus, power supply, DC/DC.

• Electrical efficiency >52% 
under standard operating 
conditions.
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SOFC Stack and System Steady-State Performance

• Characterized the heat 
rejected at various power 
outputs.

• Provide information on 
sizing of the cooling system 
for data centers.

• Power to Heat Ratio over 1 
at full load.
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SOFC Stack and System Transient Performance

• Characterized ramping 
behavior of the fuel cell 
system with controlled 
ramp loads.

• Ramp rate of 1 A/s 
achieved.

• No significant power 
overshoot observed.

• With proper system design 
the SOFC system could 
ramp fast.
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SOFC Stack and System Transient Performance

• Ramp up and down 
with various ramp rates 
were tested.

• System responds 
immediately to the 
transient demand 
perturbation.

• The SOFC system could 
follow fast load 
transients.
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SOFC Stack and System Cycling Performance

• After over 1000 hours of 
dynamic operation, 
slight voltage deviations 
were observed. 
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SOFC Stack and System Cycling Performance

• After over 1000 hours of 
dynamic operation, 
Negligible power output 
degradation observed.
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Goal Must Be: 100% Zero Emissions

Envision this future, invest in its evolution

• ALL primary energy from sun, wind, wave, …

• Use ONLY zero emissions electrochemical energy conversion to 
complement
o Batteries
o Electrolyzers
o Fuel cells

• Use ONLY zero emissions energy carriers
o Hydrogen
o Renewable gases & liquids
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Hydrogen Energy Storage Dynamics

Oct. 2 Oct. 3 Oct. 4 Oct. 5 Oct. 6 Oct. 7 Oct. 8

• Load shifting from high wind days to low wind days
• Hydrogen stored in adjacent salt cavern

Maton, J.P., Zhao, L., Brouwer, J., Int’l Journal of Hydrogen Energy, Vol. 38, pp. 7867-7880, 2013

• Compressed Hydrogen Storage complements Wind & City Power 
Demand Dynamics in (Texas)
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Hydrogen Energy Storage Dynamics

• Weekly storage and seasonal storage possible with hydrogen and 
fuel cells/electrolyzers – all zero emissions!

Weekly Seasonal
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Maton, J.P., Zhao, L., Brouwer, J., Int’l Journal of 
Hydrogen Energy, Vol. 38, pp. 7867-7880, 2013

But what can we do if we don’t have a salt cavern?
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• Recent 1-Year Simulation of 100% Renewable Grid in CA
o Wind dominant case (37 GW solar capacity, 80 GW wind capacity)

Why we need H2: Amount of Storage Required

Deficit

Surplus

21 million
EVs

Current
H2 Storage

Pumped
Hydro

§ 21 million = total CA registered light duty vehicles; Nissan Leaf battery

*Using existing natural gas resources for hydrogen storage
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Why We Need H2: World Grid Energy Storage Need

Simulate meeting of TOTAL world electricity demand w/ Solar & Wind
• How much storage is needed?

[Nuria Tirado, M.S. Thesis, 2018]

• Batteries needed, but, they cannot do it all!
o Li req’d = 3,144 Mt     Co req’d = 25,815 Mt
o Massive cost (connected power & energy scaling)
o Self discharge (measured performance in utility applications)

19,981 TWh
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Lithium
• Resources: 53 Mt (USGS)

o Economic 
feasibility

Cobalt
• Terrestrial resources: 25 Mt (USGS)
• Ocean-floor resources: >120 Mt (USGS)
• 40% of cobalt comes from the Democratic Republic of the Congo

o Improvements needed 
in cobalt extraction

Why We Need H2: Lithium-ion Batteries

– Size of the deposit

– Lithium content

– Content of other elements

– Processes used for purification

– Better geologic models

– Improved extraction methods

– Development of recovery processes

– Technological advances (deep-sea)

Figure extracted from USGS.

3,144 Mt req’d

25,815 Mt req’d
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Why We Need H2: Lithium-Ion Batteries
Round-Trip Efficiency (>90% in Laboratory Testing)
• Measured battery system performance in Utility Applications

• Self-Discharge (the main culprit), plus cooling, transforming, 
inverting/converting, and other balance of plant

From: 2017 SGIP Advanced Energy Storage Impacts, Itron, E3

Average RTE ~60%
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Brief Gedanken experiment
• First mix up to X% – tremendous boon to grid renewables
• Then piecewise conversion to pure hydrogen

1
3

7

5

Solar Here!

Close valves
Here!
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1
L=75 mile

D=30”
Line 2036

Cactus City 
Compressor Station

Min Pressure= 475 psig
Max Pressure= 850 psig

L=150 mile
D=30”

Line 2036

2

3
L=100mile

D=30”
Line 2225/1941

North Palm Spring
Compressor Station

Min Pressure= 475 psig
Max Pressure= 850 psig

L=105 mile
D=30”

Line 1941

4

5
L=124.5 mile

D=30”
Line 1918

Newberry
Compressor Station

Min Pressure= 475 psig
Max Pressure= 850 psig

L=118 mile
D=30”

Line 1921

6

7
L=115.5 mile

D=34”
Line 1917

Newberry
Compressor Station

Min Pressure= 475 psig
Max Pressure= 850 psig

L=117 mile
D=36”

Line 1922

8

El Paso

Needles

Topock

Blythe

Reference for pipe and compressor: stationhttps://www.arcgis.com/home/webmap/viewer.html?webmap=f8b54b821642463b8dc0becb2711093a

Pressure and Flow Dynamics
• With renewable gas injection at border (in desert)
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Pressure and Flow Dynamics
• 40% of all electric demand – 20 sq. miles of solar, only gas system 

use for H2 storage and T&D
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Brief Gedanken experiment
• Piecewise conversion of gas system to pure hydrogen

1
3

7

5

Solar Here!

Close valves
Here!
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Thank You!
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