In-Rack Direct DC Powering of Servers with Solid Oxide and Proton Exchange Membrane Fuel Cells

US DOE H2@Scale Data Center Workshop Seattle, WA

ADVANCED POWER & ENERGY PROGRAM **UNIVERSITY of CALIFORNIA . IRVINE**

National Fuel Cell Research Center

UCIrvine **WINDERSITY**

Jack Brouwer, Ph.D. **Director** March 20, 2019

Fuel Cell Systems for Data Centers

Challenges

- eBay's Data Center in Utah loses \$6,000 per second of downtime
- The company's sustainability mission was in conflict with UT's electric grid which sources 80% of it's electricity from coal

Solution

- 6 MW of fuel cell systems provide primary, onsite, reliable power matched to the operational requirements of the data center
- System provides 100% of electricity demand while drastically reducing carbon footprint

How it works

- Redundant, modular architecture provides highly reliable power
- System architecture replaces large, expensive & polluting backup generators and UPS components

Microsoft STARK Concept

• **In-rack Distributed Generation**

© Advanced Power and Energy Program 2019 3/28

In-Rack Distributed Generation

- **A direct generation method that places fuel cells at the rack level inches from servers**
	- **limits the failure domain to a few dozen servers**
	- **Low voltage DC direct connection enabled**
	- **Equipment such as power distribution units, high voltage transformers, expensive switchgear, and AC-DC power supplies in servers could be eliminated**
- **Hybrid fuel cell systems designed, installed and tested**
	- **Use of a 10kW PEMFC stack and system as the distributed power source to power a server rack**
	- **Use of a 2.5 kW SOFC stack and system as the distributed DC power source to power a server rack**

© Advanced Power and Energy Program 2019 4/28

Direct DC Powering of Servers

PEMFC Stack and System Performance

PEMFC Stack and System Server Dynamics

© Advanced Power and Energy Program 2019 7/28

Microsoft STARK Concept ì

(A) Traditional Data Center

(with U.S. Grid Average Efficiency, 2011)

PEMFC Stack and System System Losses

The power outputs of the 12kW in-rack PEMFC system under various external loads. Error bars in the data indicate \pm one standard deviation from 5 different **measurements.**

© Advanced Power and Energy Program 2019 9/28

Direct DC Power Dynamics

- **What do we do before ubiquitous hydrogen infrastructure?**
	- ^o **Solid Oxide Fuel Cells – natural gas operation (three systems evaluated)**

SOFC Stack and System Steady-State Performance

- Characterized I-V relation within the operating range.
- Provide information on overall data center design: bus, power supply, DC/DC.
- Electrical efficiency **>52%** under standard operating conditions.

© Advanced Power and Energy Program 2019 11/28

SOFC Stack and System Steady-State Performance

- Characterized the heat rejected at various power outputs.
- Provide information on sizing of the cooling system for data centers.
- Power to Heat Ratio over 1 at full load.

Fuel Cell Electrical Output (kW) Fuel Cell Heat Rejection (kW)

© Advanced Power and Energy Program 2019 12/28

SOFC Stack and System Transient Performance

- Characterized ramping behavior of the fuel cell system with controlled ramp loads.
- Ramp rate of 1 A/s achieved.
- No significant power overshoot observed.
- With proper system design the SOFC system could ramp fast.

© Advanced Power and Energy Program 2019 13/28

SOFC Stack and System Transient Performance

Current Applied to the Stacks

- Ramp up and down with various ramp rates were tested.
- System responds immediately to the transient demand perturbation.
- The SOFC system could follow fast load transients.

© Advanced Power and Energy Program 2019 14/28

SOFC Stack and System Cycling Performance

• After over 1000 hours of dynamic operation, slight voltage deviations were observed.

© Advanced Power and Energy Program 2019 15/28

SOFC Stack and System Cycling Performance

• After over 1000 hours of dynamic operation, Negligible power output degradation observed.

© Advanced Power and Energy Program 2019 16/28

Goal Must Be: 100% Zero Emissions

Envision this future, invest in its evolution

- **ALL primary energy from sun, wind, wave, …**
- **Use ONLY zero emissions electrochemical energy conversion to complement**
	- ^o **Batteries**
	- ^o **Electrolyzers**
	- ^o **Fuel cells**
- **Use ONLY zero emissions energy carriers**
	- ^o **Hydrogen**
	- ^o **Renewable gases & liquids**

[©] Advanced Power and Energy Program 2019 17/28

Hydrogen Energy Storage Dynamics

• **Compressed Hydrogen Storage complements Wind & City Power Demand Dynamics in (Texas)**

- **Load shifting from high wind days to low wind days**
- **Hydrogen stored in adjacent salt cavern**

Maton, J.P., Zhao, L., Brouwer, J., Int'l Journal of Hydrogen Energy, Vol. 38, pp. 7867-7880, 2013

Hydrogen Energy Storage Dynamics

• **Weekly storage and seasonal storage possible with hydrogen and fuel cells/electrolyzers – all zero emissions!**

Weekly Seasonal

But what can we do if we don't have a salt cavern?

Maton, J.P., Zhao, L., Brouwer, J., Int'l Journal of Hydrogen Energy, Vol. 38, pp. 7867-7880, 2013

© Advanced Power and Energy Program 2019 19/28

Why we need H₂: Amount of Storage Required

• **Recent 1-Year Simulation of 100% Renewable Grid in CA**

^o **Wind dominant case (37 GW solar capacity, 80 GW wind capacity)**

*Using existing natural gas resources for hydrogen storage

 $\frac{6}{3}$ 21 million = total CA registered light duty vehicles; Nissan Leaf battery

© Advanced Power and Energy Program 2019 20/28

Why We Need H₂: World Grid Energy Storage Need

Simulate meeting of TOTAL world electricity demand w/ Solar & Wind

• **How much storage is needed?**

[Nuria Tirado, M.S. Thesis, 2018]

- **Batteries needed, but, they cannot do it all!**
	- ^o **Li req'd = 3,144 Mt Co req'd = 25,815 Mt**
	- ^o **Massive cost (connected power & energy scaling)**
	- ^o **Self discharge (measured performance in utility applications)**

© Advanced Power and Energy Program 2019 21/28

Why We Need H₂: Lithium-ion Batteries

Why We Need H₂: Lithium-Ion Batteries

© Advanced Power and Energy Program 2019 23/28

Brief Gedanken experiment

- **First mix up to X% – tremendous boon to grid renewables**
- **Then piecewise conversion to pure hydrogen**

Pressure and Flow Dynamics

• **With renewable gas injection at border (in desert)**

Reference for pipe and compressor: stationhttps://www.arcgis.com/home/webmap/viewer.html?webmap=f8b54b821642463b8dc0becb2711093a

© Advanced Power and Energy Program 2019 25/28

Pressure and Flow Dynamics

Brief Gedanken experiment

• **Piecewise conversion of gas system to pure hydrogen**

Thank You!

ADVANCED POWER & ENERGY PROGRAM

UNIVERSITY of CALIFORNIA · IRVINE

National Fuel Cell Research Center

UCIrvine *SP CALIFORNIA*

© Advanced Power and Energy Program 2019 28/28