In-Rack Direct DC Powering of Servers with Solid Oxide and Proton Exchange Membrane Fuel Cells

US DOE H2@Scale Data Center Workshop Seattle, WA

ADVANCED POWER & ENERGY PROGRAM UNIVERSITY of CALIFORNIA · IRVINE NFCRC

National Fuel Cell Research Center

UCIrvine UNIVERSITY OF CALIFORNIA

Jack Brouwer, Ph.D. Director March 20, 2019

Fuel Cell Systems for Data Centers

Challenges

- eBay's Data Center in Utah loses \$6,000 per second of downtime
- The company's sustainability mission was in conflict with UT's electric grid which sources 80% of it's electricity from coal

Solution

- 6 MW of fuel cell systems provide primary, onsite, reliable power matched to the operational requirements of the data center
- System provides 100% of electricity demand while drastically reducing carbon footprint

How it works

- Redundant, modular architecture provides highly reliable power
- System architecture replaces large, expensive & polluting backup generators and UPS components

Microsoft STARK Concept

In-rack Distributed Generation

In-Rack Distributed Generation

- A direct generation method that places fuel cells at the rack level inches from servers
 - limits the failure domain to a few dozen servers
 - Low voltage DC direct connection enabled
 - Equipment such as power distribution units, high voltage transformers, expensive switchgear, and AC-DC power supplies in servers could be eliminated
- Hybrid fuel cell systems designed, installed and tested
 - Use of a 10kW PEMFC stack and system as the distributed power source to power a server rack
 - Use of a 2.5 kW SOFC stack and system as the distributed DC power source to power a server rack

4/28

© Advanced Power and Energy Program 2019

Direct DC Powering of Servers

PEMFC Stack and System Performance

PEMFC Stack and System Server Dynamics

7/28

Microsoft STARK Concept

(A) Traditional Data Center

(with U.S. Grid Average Efficiency, 2011)

PEMFC Stack and System System Losses

The power outputs of the 12kW in-rack PEMFC system under various external loads. Error bars in the data indicate <u>+</u> one standard deviation from 5 different measurements.

9/28

© Advanced Power and Energy Program 2019

Direct DC Power Dynamics

- What do we do before ubiquitous hydrogen infrastructure?
 - Solid Oxide Fuel Cells natural gas operation (three systems evaluated)

SOFC Stack and System Steady-State Performance

- Characterized I-V relation within the operating range.
- Provide information on overall data center design: bus, power supply, DC/DC.
- Electrical efficiency >52% under standard operating conditions.

11/28

SOFC Stack and System Steady-State Performance

- Characterized the heat rejected at various power outputs.
- Provide information on sizing of the cooling system for data centers.
- Power to Heat Ratio over 1 at full load.

12/28

■ Fuel Cell Electrical Output (kW) ■ Fuel Cell Heat Rejection (kW)

SOFC Stack and System Transient Performance

- Characterized ramping behavior of the fuel cell system with controlled ramp loads.
- Ramp rate of 1 A/s achieved.
- No significant power overshoot observed.
- With proper system design the SOFC system could ramp fast.

13/28

SOFC Stack and System Transient Performance

Current Applied to the Stacks

- Ramp up and down with various ramp rates were tested.
- System responds immediately to the transient demand perturbation.
- The SOFC system could follow fast load transients.

14/28

SOFC Stack and System Cycling Performance

 After over 1000 hours of dynamic operation, slight voltage deviations were observed.

SOFC Stack and System Cycling Performance

 After over 1000 hours of dynamic operation, Negligible power output degradation observed.

16/28

Goal Must Be: 100% Zero Emissions

Envision this future, invest in its evolution

- ALL primary energy from sun, wind, wave, ...
- Use ONLY zero emissions electrochemical energy conversion to complement
 - Batteries
 - Electrolyzers
 - \circ Fuel cells
- Use ONLY zero emissions energy carriers
 - Hydrogen
 - Renewable gases & liquids

17/28

[©] Advanced Power and Energy Program 2019

Hydrogen Energy Storage Dynamics

 Compressed Hydrogen Storage <u>complements</u> Wind & City Power Demand Dynamics in (Texas)

- Load shifting from high wind days to low wind days
- Hydrogen stored in adjacent salt cavern

Maton, J.P., Zhao, L., Brouwer, J., Int'l Journal of Hydrogen Energy, Vol. 38, pp. 7867-7880, 2013

Hydrogen Energy Storage Dynamics

 Weekly storage and seasonal storage possible with hydrogen and fuel cells/electrolyzers – all zero emissions!

Weekly

Seasonal

But what can we do if we don't have a salt cavern?

Maton, J.P., Zhao, L., Brouwer, J., <u>Int'l Journal of</u> <u>Hydrogen Energy</u>, Vol. 38, pp. 7867-7880, 2013

19/28

Why we need H₂: Amount of Storage Required

• Recent 1-Year Simulation of 100% Renewable Grid in CA

• Wind dominant case (37 GW solar capacity, 80 GW wind capacity)

*Using existing natural gas resources for hydrogen storage

[§] 21 million = total CA registered light duty vehicles; Nissan Leaf battery

Why We Need H₂: World Grid Energy Storage Need

Simulate meeting of TOTAL world electricity demand w/ Solar & Wind

How much storage is needed?

	Solar contribution	Wind contribution	Consumption and storage ratio	Consumption (TWh)	Storage (TWh)
Africa	0.70	0.30	8.39	9,123	1,088
America	0.45	0.55	7.83	38,541	4,919
Asia	0.50	0.50	7.95	80,866	10,178
Europe	0.30	0.70	7.50	26,951	3,592
Oceania	0.50	0.50	7.95	1,625	205
TOTAL				157,106	19,981 TWh

[Nuria Tirado, M.S. Thesis, 2018]

- Batteries needed, but, they cannot do it all!
 - Li req'd = 3,144 Mt Co req'd = 25,815 Mt
 - Massive cost (connected power & energy scaling)
 - Self discharge (measured performance in utility applications)

© Advanced Power and Energy Program 2019

Why We Need H₂: Lithium-ion Batteries

© Advanced Power and Energy Program 2019

23/28

Brief Gedanken experiment

- First mix up to X% tremendous boon to grid renewables
- Then piecewise conversion to pure hydrogen

Pressure and Flow Dynamics

• With renewable gas injection at border (in desert)

Reference for pipe and compressor: stationhttps://www.arcgis.com/home/webmap/viewer.html?webmap=f8b54b821642463b8dc0becb2711093a

Pressure and Flow Dynamics

REM 40% of all electric demand – 20 sq. miles of solar, only use for H₂ storage and T&D SS Pipe 1 Pressure (Pa) Jul Feb Apr May Jun Jan Mar Dec <10⁶ Pipe 2 Pressure(Pa) Feb Oct Nov Jan Mar Apr SO. Dec Pipe 3 Pressure(Pa) p3_{in} Jul Aug Sep Oct Nov Dec Jar $\times 10^{6}$ ssure(Pa) م May Jun Jul Aug Sep Oct Nov Dec 26/28

© Ad∿

Brief Gedanken experiment

• Piecewise conversion of gas system to pure hydrogen

Thank You!

ADVANCED POWER & ENERGY PROGRAM

UNIVERSITY of CALIFORNIA · IRVINE

National Fuel Cell Research Center

UCIrvine UNIVERSITY OF CALIFORNIA

28/28