

#### SETO CSP Program Summit 2019









energy.gov/solar-office

# Advanced Supercritical Carbon Dioxide Cycles: Switched-bed Regenerators

Advanced Projects Offering Low LCOE Opportunities APOLLO

Dr. Mark Anderson, Assistant Professor University of Wisconsin - Madison

# **Key Technical Challenge: High Recuperation Cost**



# **Solution: Use Switched-bed Regenerators Instead**



# **Switched-bed Regenerators**

1. Hot-to-cold blow

Hot fluid flows through and transfers heat to the bed (bed heated, fluid cooled)

2. Pressurization

Cold fluid pressurizes the regenerator

3. Cold-to-hot blow

Cold fluid flows through and receives heat from the bed (bed cooled, fluid heated)

4. Blowdown

High pressure fluid exhausts from the bed



# **Internally-Insulated Regenerator Bed Construction**







#### **Model Validation Tests at Multiple Scales**

#### 5 kW<sub>th</sub> UW-Madison Test



#### 50 kW<sub>th</sub> Sandia Test



# **Impact: Improved Efficiencies and Lower Cycle LCOE**

#### Best potential for replacing the high-temperature recuperator



# **Additional Impacts: Weld and Valve Development**

#### 740H and multi-material welds High-cycle life valve seats



