

#### SETO CSP Program Summit 2019

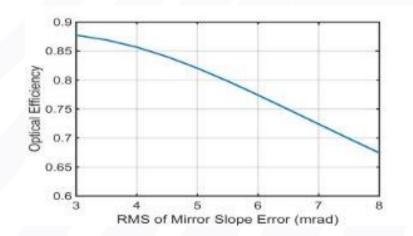


Deployment of the Aerial Distant Observer Tool to Survey Optical Performance of CSP Parabolic Trough Solar Fields

Partner: Solar Dynamics March 19, 2019

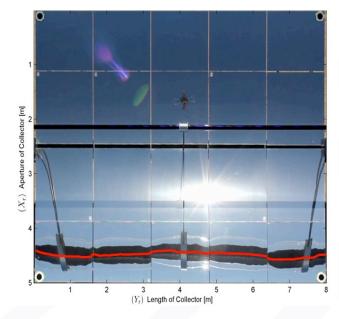
energy.gov/solar-office

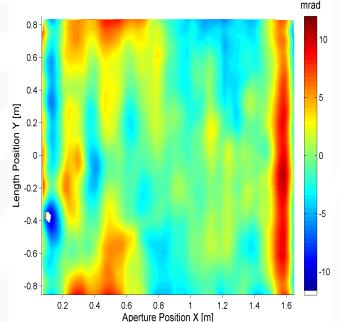
PI: Guangdong Zhu, NREL


## **Project Overview**

- TCF FY18 Award
- Team
  - NREL: Guangdong Zhu, Devon Kesseli, Rebecca Mitchell, Josh Bauer, Mark Mehos, one TBD intern
  - Solar Dynamics (SD): Patrick Marcotte, Tim Wendelin, Hank Price
- Fund:
  - \$150k to NREL and in-kind cost share of \$150k from SD
- Performance period:
  - 01/01/2019 12/31/2019

### **Motivation – Optics Matters!**


- Parabolic trough
  - A 2-mrad increase in slope error leads to a 10% efficiency loss.






### **Distant Observer by NREL**

• Capability: Measure slope error and receiver alignment error of parabolic trough collectors

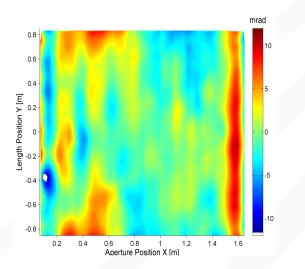


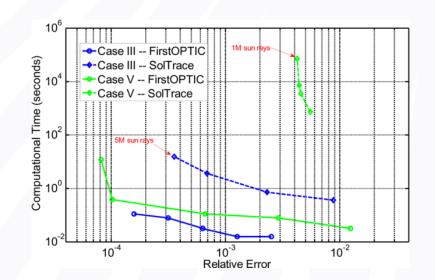


SETO CSP Program Summit 2019

## **Distant Observer by NREL**

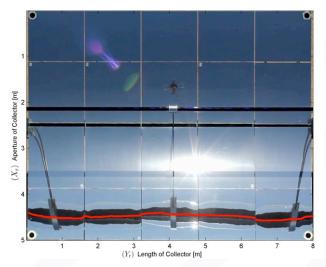
- Ground-based version has been developed
- Aerial-version is not available and would be more efficient for a large-scale plant.




SETO CSP Program Summit 2019

# **FirstOPTIC**


- An analytical method to calculate solar collector optical performance
- More accurate and efficient
- Take direct measurement results and calculate collector performance
- Gap: both DO and FirstOPTIC were written in matlab but are separate program





# **Project Objectives**

- Enhance the DO's capability to directly measure a solar collector's optical error
- Validate the performance of DO with the aerial capability to perform optical characterization of a parabolic trough collector field
- Integrate FirstOPTIC to assess the solar field performance based on DO measurement results.





SETO CSP Program Summit 2019

| Dates (M – Month) | Milestones/Deliverables                                                                     |
|-------------------|---------------------------------------------------------------------------------------------|
| 03/31/2019 (M3)   | Identify an appropriate drone and integrate with a camera.                                  |
| 06/30/2019 (M6)   | Conduct the pilot in-field DO test at a utility-scale solar field including a drone flight. |
| 09/30/2019 (M9)   | Complete the DO software updates.                                                           |
| 12/31/2019 (M12)  | Complete integration of the improved DO and FirstOPTIC.                                     |

#### **Conclusions**

- Transfer national labs intellectual property to benefit the industry
- Provide an integrated software package for measuring and assessing solar field performance under laboratory and in-situ conditions with high-level accuracy
- Provide an alternative competing tool to the industry