DOE Water Power Technologies Office

Semiannual Stakeholder Webinar
February 7, 2019

Alejandro Moreno, Director
Tim Welch, Hydropower Program Manager
Tim Ramsey, Marine and Hydrokinetics Program Manager
Hoyt Battey, Strategy and Analysis Program Manager
Webinar logistics

• If you have issues with the webinar, please send a private chat to Jenny, who will be able to assist you.

• The webinar will be recorded, transcribed, and shared in a future edition of the Water Wire.

• The webinar will conclude with a Q&A session. Please send questions by 4:00pm ET to WaterPowerTechnologiesOffice@EE.DOE.GOV.
 – We will try to answer as many questions as we can.
 – Names of individuals submitting questions will remain anonymous to our listeners.

Want periodic updates on water power funding opportunities, events, and publications?
• Introduction – Alejandro Moreno (3:00 – 3:15)
 – What is the Water Power Technologies Office (WPTO)?
 – How can you work with WPTO?
 – 2018 highlights for the Office and the Department of Energy

• Hydropower Program – Tim Welch (3:15 – 3:35)
 – Program overview & 2018 highlights

• Marine and Hydrokinetics Program – Tim Ramsey (3:35 – 4:00)
 – Program overview & 2018 highlights

• Outreach and Engagement – Hoyt Battey (4:00 – 4:10)
 – Upcoming events and how to learn more about water power research

• Questions & Answers (4:10 – 4:30)
 – Please submit questions by 4:00pm to WaterPowerTechnologiesOffice@ee.doe.gov
About the Water Power Technologies Office (WPTO)

WPTO invests in early-stage research to accelerate development of innovative water power technologies while ensuring that long-term sustainability and environmental issues are addressed.

WPTO supports efforts to validate performance and grid-reliability for new technologies, develop and increase accessibility to necessary testing infrastructure, and evaluate systems-level opportunities and risks.

WPTO aggregates, analyzes and disseminates relevant, objective, technical information on water power technologies and related issues to stakeholders and decision-makers.

Emerging priorities: In 2018, WPTO focused efforts on two new research portfolios within our hydropower and marine energy programs:

- A hydropower-grid research portfolio focused on current conditions as well as potential future value drivers
- Analysis of marine energy technologies’ potential to power the blue economy (ocean industries & missions)
DOE & WPTO over the last year

• DOE received a full year of appropriations for fiscal year 2019, including $70M for marine energy R&D and $35M for hydropower R&D.

• Secretary Rick Perry led a White House event about the use of prizes and challenges to drive innovation. The Secretary was joined by AquaHarmonics who won WPTO’s Wave Energy Prize in 2016.

• DOE launched the Water Security Grand Challenge to advance transformational technology and innovation to meet the global need for safe, secure, and affordable water.

• Under Secretary of Energy Mark Menezes delivered a keynote at Waterpower Week 2018 on the role of water power in the Administration’s energy strategy.

• Daniel Simmons was confirmed and sworn in as DOE’s Assistant Secretary for Energy Efficiency and Renewable Energy (EERE). He previously held this role in an acting capacity.
Why is engagement important to us?

WPTO’s Outreach and Engagement Strategy

GOAL ONE – TRANSPARENCY: Demonstrate good stewardship of taxpayer funds by persistently and transparently communicating how WPTO funds are being utilized and evaluate project impacts

GOAL TWO – FEEDBACK: Get feedback from stakeholders to inform and improve WPTO projects and strategy

GOAL THREE – DISSEMINATION: Maximize the impact of WPTO-supported research by effectively disseminating results of projects and tracking usage of various products

GOAL FOUR – OBJECTIVE AND ACCURATE INFORMATION: Provide access to accurate and objective information and data that can help to accelerate industry development and inform decision-makers
• **Competitive funding opportunities** through which organizations can apply for financial support. These projects, established through cooperative agreements, generally require some level of cost-share from the awardee.

• Innovative funding mechanisms such as **prizes and challenges** are also being used more frequently across DOE and other federal agencies.

• The **Small Business Innovations Research (SBIR) and Small Business Technology Transfer (STTR) Programs** are competitive programs targeted to small businesses.

• WPTO and other DOE offices often utilize a public **Requests for Information** (RFI) to solicit feedback from stakeholders on WPTO’s programmatic strategy and industry’s research and development needs.

• DOE’s **National Laboratories** have research centers that can help water power researchers and manufacturers (there are a number of different options for working with Labs).

Most of these opportunities are publicly posted on **EERE Exchange** (*SBIR and STTR can be found on https://science.energy.gov*).

You can **reach out to WPTO** to ask a question, offer feedback, or request a meeting by writing to **WaterPowerTechnologiesOffice@EE.DOE.GOV**

Want **periodic updates** on water power funding opportunities, events, and publications?
WPTO organizational structure

Director
Alejandro Moreno

Strategy & Analysis
Program Manager
Hoyt Battey

Hydropower
Program Manager
Timothy Welch

Marine & Hydrokinetic
Program Manager
Tim Ramsey

Operations Supervisor
Matthew Grosso
The Hydropower Vision: connections with the DOE Hydropower Program’s strategic framework

Hydropower Vision Pillars

- OPTIMIZATION
- GROWTH
- SUSTAINABILITY

DOE Hydropower Program Strategy

Hydropower Program’s Strategic Approaches

- Hydro and PSH Grid Reliability and Resilience
- Technology R&D (HydroNext)
- Environmental R&D
- Data Sharing and Analysis (HydroSource)
DOE Hydropower Program’s strategic approaches and project examples

Hydropower Program’s Strategic Approaches

DOE Hydropower Program Strategy

Hydro and PSH Grid Reliability and Resilience

Valuation Guidebook for Pumped Storage

Composite Archimedes Screw Turbine

Technology R&D (HydroNext)

Data Sharing and Analysis (HydroSource)

Environmental R&D

Regulatory and Permitting Information Desktop (RAPID) Toolkit

Fish Passage Funding Opportunity

Diagram Key

Some examples of recent WPTO-funded projects
Technology R&D for Low-Impact Hydropower Growth (HydroNEXT)

• Early-stage research in technologies and systems to reduce costs and unlock new resources
• Leverage advanced manufacturing and materials
• New design paradigms for hydropower project development for multiple environmental and social benefits

Upgrades for Existing Hydropower

Non-Powered Dams and Conduits

New Stream-Reach Development
Composite Archimedes Hydrodynamic Screw (CAHS) turbine

- Lower installed costs and improved hydraulic efficiencies compared to steel
- Individual blade segments produced using advanced manufacturing techniques
- Prior to testing, Percheron received assistance from Pacific Northwest National Laboratory to optimize and validate the CAHS shape and design

35kW prototype testing at Utah Water Research Laboratory

Courtesy of Percheron Power and Utah State University
Five national laboratories have been organized into a hydropower grid research initiative that investigates the contribution of hydropower resources to the reliability and resiliency of the national electric power system. The research has four domains:

- **Value Under Evolving System Conditions:** What Will the Grid Require?

 OUTPUT: Future Conditions, Services, and Value

- **Capabilities and Constraints:** What Can the Hydropower Fleet Do, and Why, in Today’s and the Emerging Grid?

 OUTPUT: Technology Characterization

- **Operations and Planning:** How Can We Plan and Operate the Hydropower Fleet to Best Take Advantage of Capabilities?

 OUTPUT: Competitive Position and Contribution to System Attributes

- **Technology Innovation:** What Achievable Innovations are Needed to Enable or Preserve Hydropower’s Critical Contribution to the Electric System of the Future?

 OUTPUT: New Technology Designs to Create New Capabilities or Remove Barriers

The research focuses on:

- Hydro and PSH Grid Reliability and Resilience
- Technology R&D (HydroNext)
- Environmental R&D
- Data Sharing and Analysis (HydroSource)
In 2017, Congress directed WPTO to analyze the value of pumped-storage hydropower at two U.S. sites with high-levels of intermittent renewable energy generation.

WPTO has since initiated the development of an advanced valuation methodology for pumped storage hydropower that can be used by pumped storage developers, plant owners and operators, and other stakeholders to assess the economic value of existing or planned pumped storage projects.

We then developed and issued a Notice of Opportunity for Technical Assistance (NOTA) to competitively select two sites to focus our analysis – a detailed valuation analysis of the economic value of each project based on the market, location, and plant characteristics.

Goldendale

GridAmerica Holdings, Inc.

Closed loop, variable speed, 1.2 GW project in the WA/OR border

Banner Mountain

Absaroka Energy, LLC

Closed loop, ternary, 400 MW project in central Wyoming
Environmental R&D

- Research to **improve environmental performance** for existing and new hydropower technologies
- Develop **monitoring and measurement strategies** for evaluating environmental impacts
- Develop **metrics for evaluating environmental sustainability** for new hydropower developments and facilities
- Assess **impacts of long-term hydrologic variations**
Fish passage funding

Testing the Effects of Innovative Fish Passage Technologies
– Alden Research Laboratory, Inc.:
 • Modular and Scalable Downstream Passage Systems for Silver American Eels
 – University of Massachusetts Amherst
 • Fishway Entrance Palisade

Advancing Innovative Methods and Technologies to Improve Fish Passage
– Electric Power Research Institute
 • Machine Learning and Data Analytics for Automated Detection, Identification, Enumeration, and Tracking of Migrating Adult Eels from Sonar Data
Data sharing and analysis

• Supply objective **data and analysis**, often based on information collected over the course of other WPTO research efforts, to decision makers and hydropower industry stakeholders

• Document and **disseminate successful regulatory process practices**

• Develop opportunities and collaborative mechanisms to **increase coordination among permitting agencies**
The RAPID Toolkit is designed to increase transparency, decrease uncertainty and reduces time and costs of developing and re-licensing hydropower projects.
New national laboratory research efforts

• **Real-time, Autonomous Water Quality Monitoring System** – Pacific Northwest National Laboratory (PNNL) will advance state-of-the-art dissolved oxygen measurement platforms to support monitoring and improve the environmental performance of hydropower systems.

• **Irrigation Modernization** – Idaho National Laboratory (INL) and PNNL will partner to evaluate hydropower’s potential to enable and enhance the modernization of U.S. agricultural irrigation systems.

• **Nontoxic Coatings for Invasive Organisms at Hydropower Facilities** – PNNL will conduct research into durable, economical, and nontoxic coatings that will prevent invasive mussels and other organisms from growing on hydropower structures.

• **Advanced Manufacturing for Hydropower** – PNNL will identify hydropower components that could be suitable for advanced manufacturing techniques like additive systems (e.g. 3D printing), advanced welding techniques, robotics and automation, and embedded sensors.

Want **periodic updates** on water power funding opportunities, events, and publications?
Challenges to developing marine energy technologies

- Difficult Engineering
- Installing and Operating Reliable Systems
- Prolonged Design and Testing Cycles
- Technology / Market Information & Supply Chains
MHK technologies are at an early stage of development due to the fundamental challenges of generating power from dynamic, low-velocity and high-density currents while surviving in corrosive marine environments. These challenges are intensified by high costs and lengthy permitting processes associated with in-water testing.
WPTO launched a research effort into maritime markets in 2018

Unlocking opportunities for ocean science, security, and other maritime industries by exploring new applications for marine renewable energy.

Marine renewable energy presents a novel and innovative suite of technologies that could help remove power constraints for coastal end users or those out at sea.

By helping to address the needs of these sectors, marine energy could:

- Accelerate growth in the blue economy
- Create new opportunities for sustained economic development
In 2018, DOE released a draft report on this topic along with a request for public input.

- Received over 400 comments
- Currently refining report based on stakeholder feedback
- Final report to be released within the quarter
- Analysis will inform future work

Ocean Policy Committee created through Executive Order & WPTO is engaged.

• The Order also gave guidance to DOE and other agencies enabling continued involvement in regional ocean planning groups. WPTO has historically engaged with the Northwest, West, and Northeast regional groups.

“In addition to generating electricity for use on-shore, power generated at sea (from waves, currents, or wind) could be used to serve the needs of other existing or emerging ocean industries (aquaculture, ocean mineral mining, oceanographic research, or military missions).”
Foundational and crosscutting R&D

• Drive early-stage R&D focused on components, controls, manufacturing and materials

• Develop and validate numerical modeling tools

• Improve resource assessments and characterizations
Sandia National Lab: wave energy control systems research

Sandia testing @ the Navy’s Maneuvering and Sea Keeping (MASK) basin in Carderock, MD

In May, Sandia completed wave tank testing to investigate the performance of different closed-loop wave energy converter power take-off controllers.

Further testing is planned for the first half of 2019.
Technology-specific design and validation

- Validate performance and reliability of systems
- Improve cost-effective methods for installation and operations and maintenance (O&M)
- Support the development and adoption of international standards
- Evaluate current and potential future needs for marine energy-specific infrastructure
A U.S. subsidiary of Irish-based Ocean Energy Ltd., Vigor, Siemens, and others are collaborating to build a 35-meter wave energy converter at Vigor’s fabrication facility in Portland, OR.

Ocean Energy received WPTO funding in 2013 to research alternative manufacturing methods for its OceanEnergy Buoy hull.

The device will have a 500-kilowatt HydroAir turbine designed by Dresser Rand. The turbine has its own controls system and has already been successfully tested at sea in Galway Bay, Ireland.

WPTO and Ireland’s Sustainable Energy Authority are both providing research funding that will support the in-water testing of the new OceanEnergy Buoy.
Reducing barriers to testing

- Enable access to world-class testing facilities
- Focus research to reduce the cost and complexity of permitting and environmental monitoring
- Ensure that existing data is accessible and used by regulators
- Support scientific research focused on retiring or mitigating environmental risks
Reducing barriers to testing in 2018

Milestone reached in PacWave permitting with the submission of a Draft License Application (DLA)

In April, Oregon State University submitted the DLA to the Federal Energy Regulatory Commission (FERC) for the wave energy test site DOE is helping to establish off the Oregon coast. The plan outlines construction and operation details as well as measures to avoid and mitigate any potential environmental effects.
Integral Consulting, Inc. and the Pacific Northwest National Laboratory performed a sequence of tests using a new sensor package, NoiseSpotter, which is designed to record and localize sound generated by marine energy devices. Distinguishing sound from marine energy devices from other sounds will provide important information related to any potential environmental effects of these devices to marine animals.

This work is part of the Triton Initiative which supports the development of advanced and cost effective environmental monitoring technologies for marine renewable energy applications.
Data sharing and analysis

- Assess potential marine energy market opportunities, including those relevant for the blue economy
- Aggregate, analyze and disseminate data on MHK performance and technology advances
- Leverage methods and lessons from the international marine energy community and other offshore sectors
Tethys: DOE resource for offshore renewable energy environmental information

• The premier resource for information on the potential environmental effects of marine energy.

• Thousands of documents; searchable, sortable, tagged, with metadata.

• Active dissemination tools: webinars, news feed, calendar of events, project metadata and information, links to external websites.

• In 2019, WPTO will work on creating “Tethys Engineering” – a website similar to Tethys that will serve as a knowledge based for engineering reports.
January 2019: WPTO announced the selection of twelve new marine energy R&D projects

“Advancing next-generation marine energy will help the U.S. ensure a secure, reliable, and enduring supply of American energy. These early-stage research and development projects are key to the development of water power as part of DOE’s ‘all-of-the-above’ energy strategy.”

- Under Secretary of Energy Mark Menezes

Want periodic updates on water power funding opportunities, events, and publications?

Early Stage Device Design Research
- Oscilla Power
- Atargis Energy Corporation
- Columbia Power Technologies
- Littoral Power Systems
- University of Hawaii at Manoa
- North Carolina State University
- Texas A&M University
- Florida Atlantic University

Controls and Power Take Off Design Integration and Testing
- Portland State University
- CalWave Power Technologies
- AWS Ocean Energy

Dissemination of Environmental Data and Analyses to Facilitate the Marine Energy Regulatory Process
- Kearns and West
New national laboratory research efforts

- **Load Analysis for Variable Geometry Wave Energy Converters (WEC)** – The National Renewable Energy Laboratory (NREL) will investigate next-generation power maximizing, load-shedding wave energy converters with variable geometry control strategies that reduce costs of handling powerful waves.

- **WEC Array Power Management and Output Simulation Tool** – NREL will create a publicly accessible numerical modeling toolset to help wave technology developers optimize plant performance (compatible with different power systems and wave conditions).

- **Grid Value Proposition of MHK** – NREL and the Pacific Northwest National Laboratory (PNNL) will explore different benefits that marine hydrokinetic developments could have on grid reliability and resiliency, on an intermediate-to long-term horizon.

- **Environmental Data Analysis and Coding Competition** – PNNL will develop a competition to find solutions that reduce the time and costs associated with analyzing environmental monitoring data of marine energy technology deployment and operations.

- **WEC Design Optimization** – Sandia National Laboratory will create a hybrid optimization system that simultaneously improves design approaches and controls of existing WEC concepts to overcome costly iterative design/build/test approaches.

- **Umbilical Cable Design Requirements and Best Practices** – NREL and PNNL will accelerate the development of robust and cost effective umbilicals (medium voltage power and communication lines that connect floating WECs to subsea transmission lines).

- **Instrumentation Guidance and Open Source Processing Software Tools** – NREL, PNNL, and SNL will develop tools that can be adopted by the marine energy industry to secure high quality data and reduce costs and timelines for lab and field scale testing.

- **Flexible Material WEC** – NREL will identify, verify, and provide a pathway to achieve economic viability and competitiveness of wave energy, demonstrated by a wave energy converter archetype applied to the large-scale continental grid electricity market.
Learn the specifics at WPTO’s projects map

- Interactive map
- Provides information on WPTO’s R&D portfolio
- Features multiple filters to isolate specific details on DOE hydropower and marine energy projects throughout the U.S.
- Contains historical information on completed projects with associated materials, research findings, and publication links

https://energy.gov/eere/water/water-power-technologies-office-projects-map
Meet WPTO staff at these upcoming events

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northwest Hydroelectric Association</td>
<td>February 20 - 22</td>
<td>Portland, OR</td>
</tr>
<tr>
<td>Oceanology International Americas</td>
<td>February 25 - 27</td>
<td>San Diego, CA</td>
</tr>
<tr>
<td>Waterpower Week</td>
<td>April 1 - 3</td>
<td>Washington, DC</td>
</tr>
<tr>
<td>Offshore Technology Conference</td>
<td>April 30 - May 3</td>
<td>Houston, TX</td>
</tr>
<tr>
<td>Capitol Hill Oceans Week</td>
<td>June 4 - 6</td>
<td>Washington, DC</td>
</tr>
<tr>
<td>Hydrovision International</td>
<td>July 23 - 25</td>
<td>Portland, OR</td>
</tr>
<tr>
<td>Ocean Renewable Energy Conference</td>
<td>September 11 - 12</td>
<td>Portland, OR</td>
</tr>
<tr>
<td>Ocean Obs</td>
<td>September 16 - 20</td>
<td>Honolulu, HI</td>
</tr>
<tr>
<td>WPTO Peer Review</td>
<td>October 7 - 11</td>
<td>Alexandria, VA</td>
</tr>
<tr>
<td>The International Conference on Ocean Energy</td>
<td>Spring of 2020</td>
<td>Washington, DC</td>
</tr>
</tbody>
</table>
Questions & Answers

This Q&A session will conclude the webinar.

The webinar will be recorded, transcribed, and shared in a future edition of the Water Wire.

Thank you for joining us today! We hope to stay in touch.

You can reach out to WPTO to ask a question, offer feedback, or request a meeting by writing to WaterPowerTechnologies Office@EE.DOE.GOV

Want periodic updates on water power funding opportunities, events, and publications?

Subscribe to The Water Wire
Submit your e-mail address below.

Enter Email Address

Go