

Renewable Hydrogen for a Carbon-Free Data Center

March 20, 2019

Hydrogen and Fuel Cell R&D for Datacenter Applications J. Kurtz,¹ Z. Ma,¹ S. Hammond,¹ T. Cader,² and K. Wipke¹ Genevieve Saur ¹(presenter) 1.National Renewable Energy Laboratory 2.Hewlett Packard Enterprise High costs in power infrastructure, inefficiencies, and backup power required

NATIONAL RENEWABLE ENERGY LABORATORY

Carbon-Free Data Center Vision

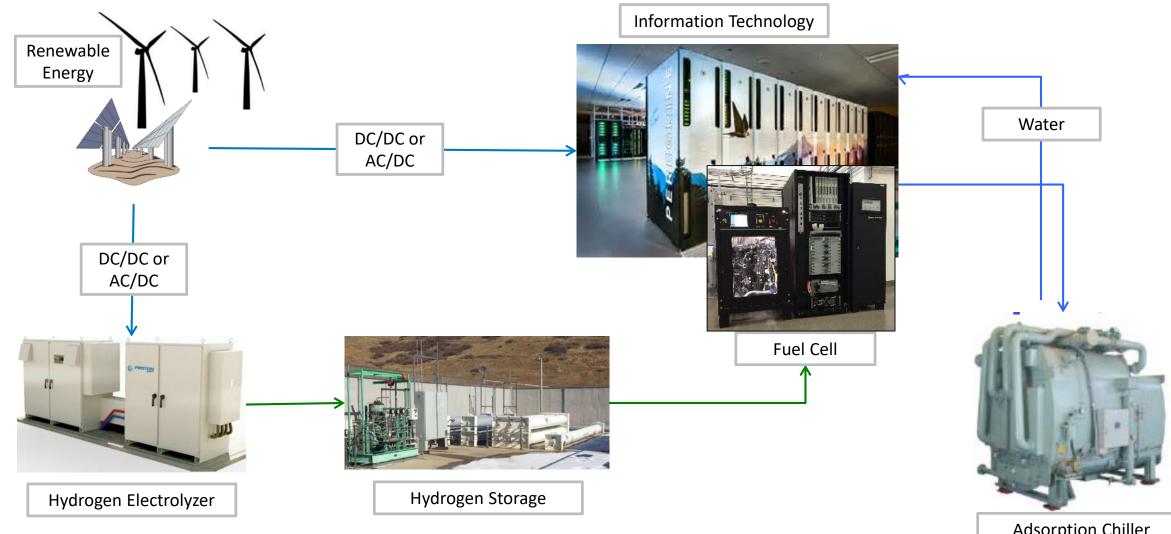


Photo credits (L to R): Proton Onsite; NREL; Power Innovations; NREL; HPE

Schematic illustrative of possible system

Adsorption Chiller

One concept : FC integrated racks

Integrated Fuel Cell Data Center	Comparison to Baseline, Air Cooled Data Center (traditional)	✓ Reduce long-ter				
Hydrogen distribution inside data center	 + Lower cost than electrical distribution inside data center + Simplified mechanical system + Estimated lower operation and maintenance costs + CHP – waste heat capture and re-use - High capital costs 	 overall Total Cost of Ownership ✓ Increase reliability and resiliency ✓ Take advantage of inexpensive renewables in the future 				
Fewer IT racks for data center load	 + Liquid cooled ~1.8x higher rack density than air cooled + Decreased data center footprint and decreased building shell cost 	Critical IT load (MW) Rack power (kW) # of IT racks IT cooling methodology	Standard Data Center 50 12 4,167 Air	Fuel Ce Cen 50 60 83 Liqu		
Resiliency	 + Individual racks can continue operation while maintaining other racks + External diesel generator backup and uninterruptible power supplies are not needed 	Fuel Cell Racks (130 kW per rack) % IT rack load to air % IT rack load to water Central UPS? Diesel generators? Chiller types Chiller capacity (tons of refrigeration) Cooling towers?	0 100 0 Yes Yes Absorption 1,200 Yes	42- 30 70 No No Adsor 20 Ye		

Fuel Cell Data

Center

50

60 833

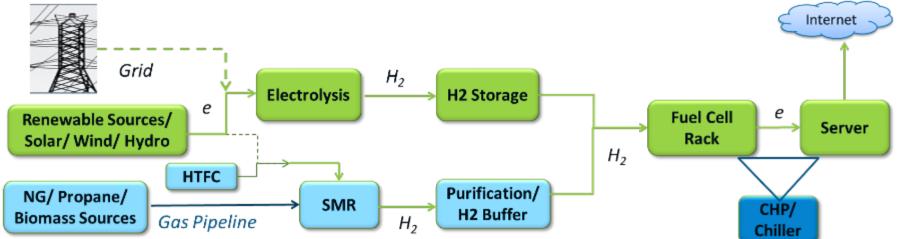
Liquid

424

30

70

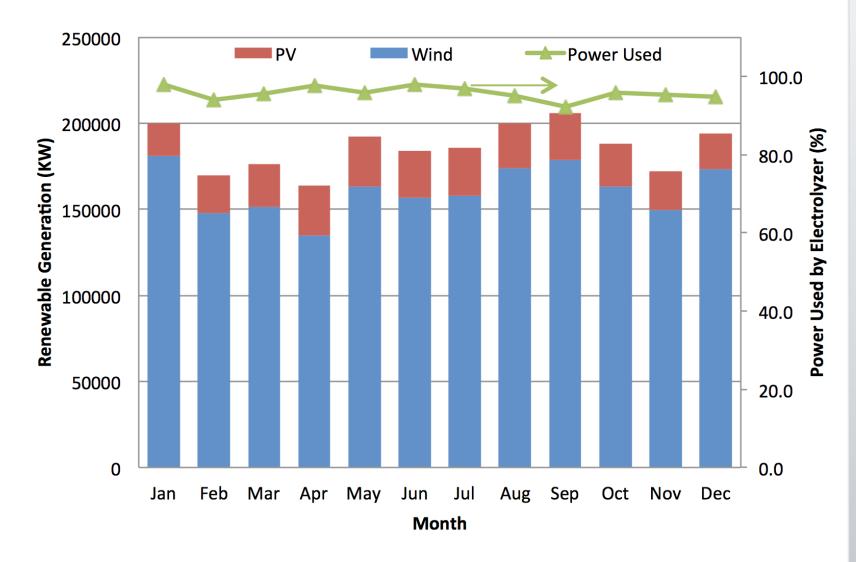
No


No

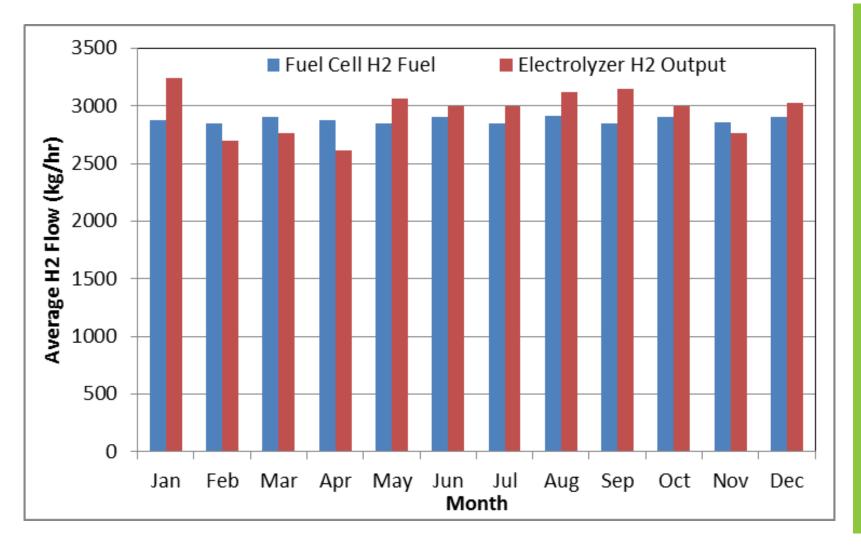
Adsorption

200 Yes

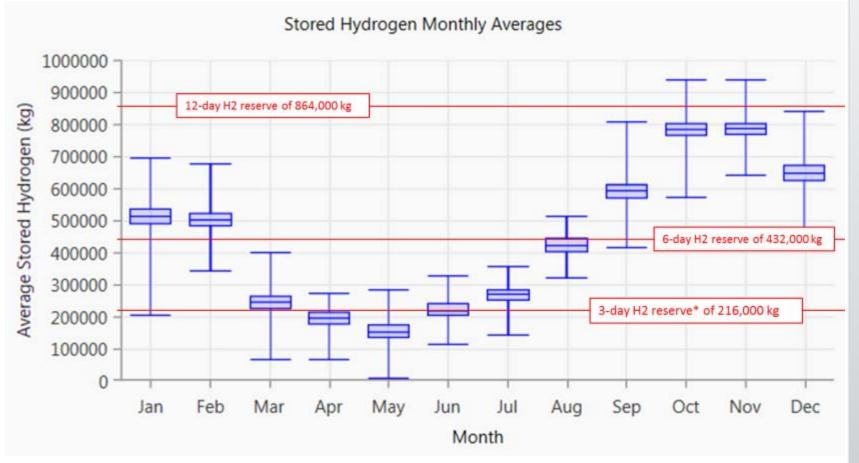
System Modeling for Hydrogen Infrastructure


Scenarios	Sizing	Economics
 Two Locations Quincy, WA San Antonio, TX Energy Sources 100% renewable (PV and wind) Natural gas to hydrogen Grid independent and grid dependent 	 50 MW 24/7 load demand Renewable generation name plate Renewable generation output estimate Electrolysis name plate Hydrogen production estimate Hydrogen storage Equipment footprint 	 Renewable generation and hydrogen infrastructure Data center total cost of ownership Capital costs Operation and maintenance costs Cost estimates include current and projected

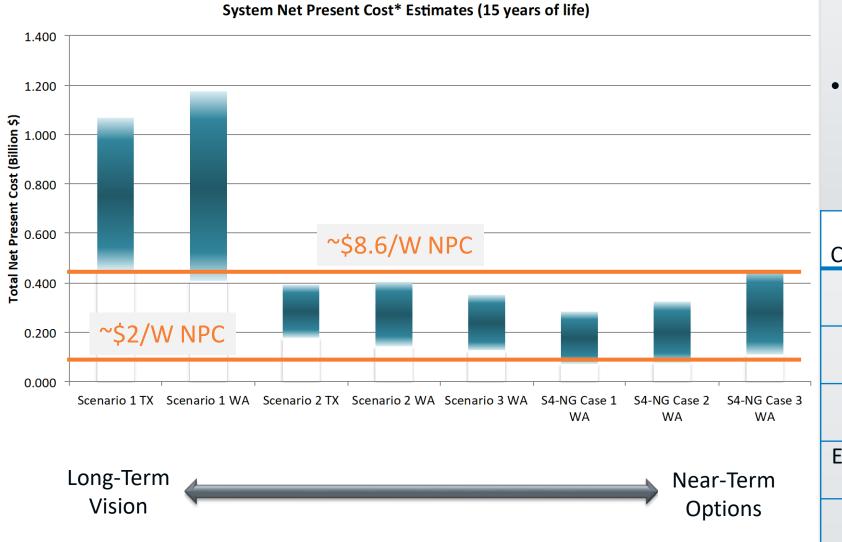
Summary of Options Considered


Scenarios	1. Wind/PV -> H2 -> IT	2. Wind/PV -> H2 -> IT & Wind/PV -> IT	3. Add grid to 2	4.	Natural Gas (NG)->	H2
Description	All data center power comes from renewable produced hydrogen Includes San Antiono, TX &	Data power is shared with direct renewables (highest efficiency, most intermittent) & renewably produced hydrogen	Scenario 2 and Includes grid power purchase and sell cost	Case 1. NG SMR with Grid	Case 2. NG SMR HT FC for auxiliary power	Case 3. NG SMR HTFC and renewable Power
	Quincy, WA locations	Includes San Antiono, TX & Quincy, WA locations	Includes Quincy, WA location			
Pros	Zero emissions (excluding component manufacturing) Electrolyzer handles renewable intermittenancy and variability FC deliver constant, high quality power	Best renewable round trip efficiency. Lower capital cost reduced renewable and hydrogen storage capacity.	Possible option for near-term	Low capital cost	Grid independent	Grid independent plus renewables, limit total capital around \$0.2 billion
Cons	~35% round trip efficency requires large renewable size High runtime onFC and electrolyzer increases maintenance costs	Requires both electrical and hydrogen infrastructure in the data center. Need controlling coordination of renewable power supply and fuel cell ramping	Not zero emissions Requires grid connection	Carbon from NG	Carbon from NG, also HOMER is incapable to simulate HT FC and power FC at the same time.	Carbon from NG, beyond HOMER controler capability for power generation, storage, and consumption optimizaiton.

Renewable Hydrogen Production Modeling


- H2 to Power to supply 50 MW data center IT load.
- ~33% renewable generation capacity factor (location specific)
- Electrolyzer follows variable renewable generation
- Nameplate size to ensure sufficient storage during low or no renewable generation
- Example 100% renewable, WA location has 635 MW generation (525 MW is wind) and 250 MW of electrolysis
- Smaller systems for other intermediate scenarios

Comparison of hydrogen production (electrolyzer) and consumption (fuel cell) DRAFT Scenario 1 Quincy WA


- Hydrogen production lower than consumption in February through April
- Lower generation times drives the renewable generation size

Renewable Hydrogen Storage Modeling (Quincy, WA site)

- Hydrogen storage for minimum 3 day reserve (216,000 kg)
- 50 MW, 24/7 demand =
 72,000 kg H₂/day (~50% efficient fuel cell)
- Some months hydrogen production is less than demand (e.g., February to April in WA)
- System footprint and hydrogen storage is largest for 100% renewable scenarios (e.g., ~650 acres in WA)

System Economic Estimates (excludes data center costs)

- High estimates based on current costs and low estimates based on projected costs
- Lower capital cost does not necessarily result in lower total cost of ownership

_	Installed	Current Cost	Projected			
	Component	(2016)	Cost (2030)			
-	Wind	1,397	1 200			
	(\$/kW)	1,597	1,200			
-	Solar	1 500	1 000			
	(\$/kW)	1,500	1,000			
	Fuel cell	300 (eff.	50 (eff.			
	(\$/kW)	50%)	50%)			
	Electrolyzer	1200 (eff.	800 (eff.			
	(\$/kW)	65%, 25 yrs)	75%, 25 yrs)			
	Storage	500 (10 yrs)	7 (20 yrs)			
	(\$/kg)	200 (10 ¥IS)	Cavern			

Benefits of Fuel Cell-Powered Data Center

- Savings from grid independent operation
 - $_{\odot}~$ On-site generation with behind the meter electricity price
 - $_{\odot}~$ Avoid demand charges
 - FC electric power directly used by computer for low Power Usage Effectiveness (PUE)
 - Stable load and controlled environment favor higher fuel cell efficiency and longer servicer life.
- Energy savings:
 - Overall efficiency with heat recovery to drive chiller for building heating and equipment cooling needs
 - $_{\odot}~$ Data center of low cost and small foot print by FC racks
 - \circ No H₂ distribution cost needed as H₂ is consumed locally
- Increase fuel cell production and accelerate its deployment.

Summary

Challenges

- High capital cost of several components
- Large scale storage options for hydrogen in carbon-free, renewable scenarios
- Conceptual change for data center design

Opportunities

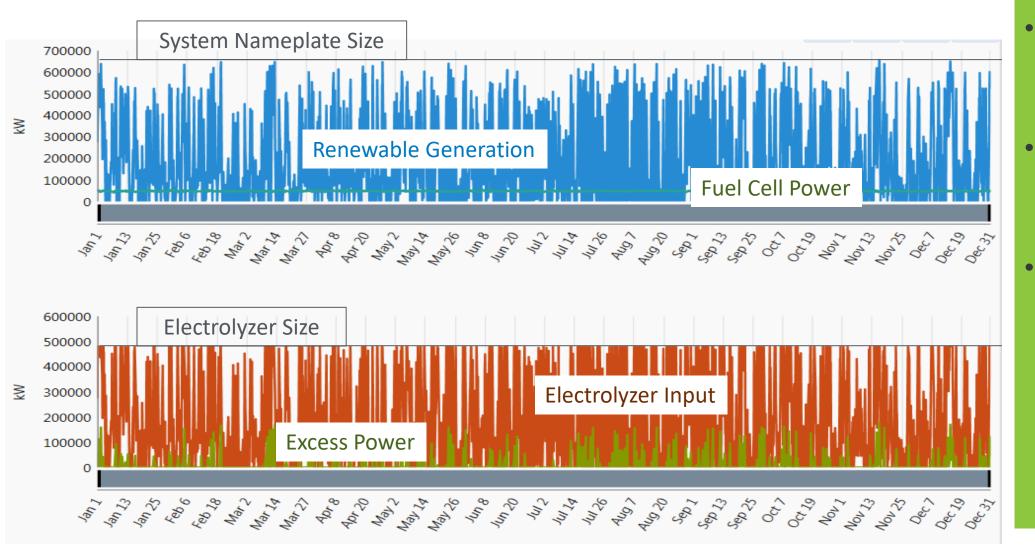
- Hydrogen distribution less costly than electrical distribution
- Data center size, cost, and thermal load could be reduced
- CHP opportunities
- Synergies with large renewable deployments
- In near term natural gas options could be economic
- Increased resiliency and reliability

With the sustained drop of the cost for renewable power, long-term renewable hydrogen to supply fuel cells for powering a data center can realize both decarbonization and economic returns.

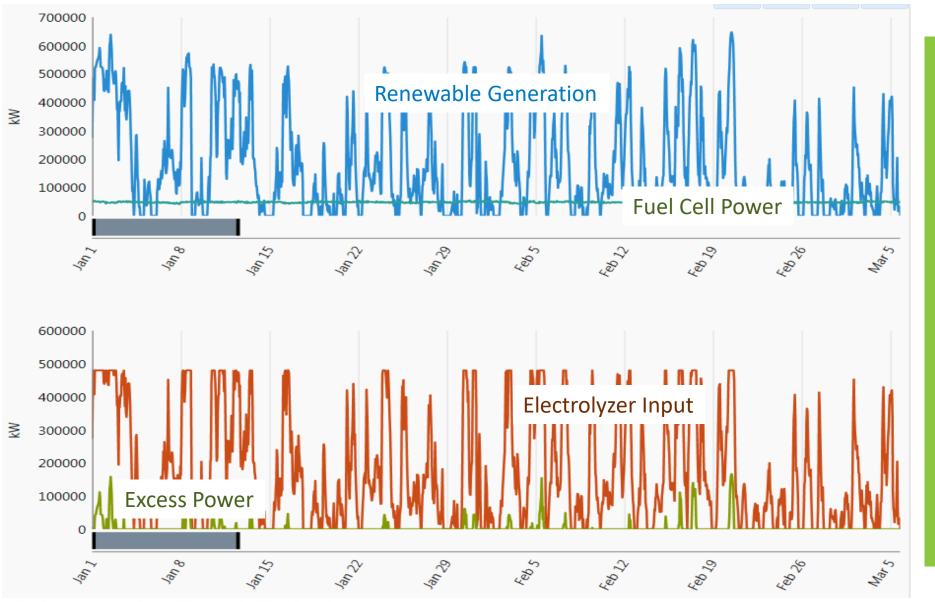
Backup

Modeling Objectives and Considerations

Carbon free computing – Utilize hydrogen as energy storage to integrate renewable solar and wind resources for a data center


- Model Scope: The hydrogen generation, storage, and consumption equipment will be defined in a conceptual block diagram. These components and subsystems will be included in a <u>conceptual</u> model to:
 - create equipment sizing (quantity and footprint)
 - o annual renewable generation profile (based on Quincy, WA and San Antonio, TX locations)
 - o annual renewable hydrogen generation profile
 - o annual hydrogen demand profile
 - equipment cost estimates (based on current technology status, which are undersized for this full scale rollout)
- Model Setup
 - $_{\odot}$ $\,$ Two locations: San Antonio, TX and Quincy ,WA
 - Two cost inputs: current and projected values.
 - Four scenarios were considered:
 - 1. Grid-independent, renewable generation to hydrogen production to fuel cell power for data center (long-term vision)
 - 2. Grid-independent, renewable generation to hydrogen production to fuel cell power and renewable generation for data center
 - 3. Grid-dependent, renewable and fuel cell supply (basis for near-term vision)
 - 4. Natural gas reforming to hydrogen storage to fuel cell power for data center
 - No thermal load was considered yet.
- Model Results
 - Verified required capacity, load, and hydrogen storage.
 - Generated electricity and hydrogen generation profile.
 - Sized equipment.
 - $_{\odot}$ $\,$ Estimated electric and capital cost.

Installed Components	Current Cost (2016)	Projected Cost (2030?)	Reference Source
Wind (\$/kW)	1,397	1,200	NREL report TP53045
Solar (\$/kW)	1,500	1,000	GTM Research and DOE SunShot
Fuel cell (\$/kW)	300 (eff. 50%)	50 (eff. 50%)	Industry and DOE Goal
Electrolyzer (\$/kW)	1200 (eff. 65%, 25 yrs continuous)	800 (eff. 75%, 25 yrs)	NREL report TP53045 and internal discussion
Storage (\$/kg)	500 (10 yrs)	7 (20 yrs) Cavern	Refer to DOE MYRDD and TP53045


Note: No land cost were considered in COE numbers next.

Annual Renewable Generation, Fuel Cell, Electrolyzer and Excess Power Estimate Scenario 1 Quincy WA

- Generation does peak at nameplate capacity
- FC Power constant for Data Center demand
- Electrolyzer size limited to 480 MW, which results in small amounts of excess renewable generation (< #%)

Jan-Mar Renewable Generation, Fuel Cell, Electrolyzer and Excess Power Estimate Scenario 1 Quincy WA

- Zoomed in to show highly variable operation
- Electrolyzer operation follows renewable generation profile
- Gaps in electrolyzer power indicate low renewable resources and depleting hydrogen storage
- Storage sizing dependent on renewable generation profile

Scenario Results Summary – PV & Wind

	Scenarios	1. Wind/P\	/ -> H2 -> IT	•	-> H2 -> IT & PV -> IT	3. Add grid to 2	4.	Natural Gas (NG)->	H2
		TX Site	WA Site	TX Site2	WA Site3	WA Site5	WA Site6	WA Site7	WA Site8
	Size (MW)	140	120	60	70	20	0	0	20
	Annual Generation (kWh/yr)	242,453,051	210,345,034	103,908,450	131,465,646	35,037,505			
	Footprint m^2	903,000	774,000	387,000	594,000	129,000	0	0	32
2	(acres)	(223)	(191)	(96)	(147)	(32)	U	U	52
1	Initial Capital \$M (current)	210	180	90	105	30	0	0	30
	Initial Capital \$M (projected)								
	COE (\$/kWh)	0.063	0.06	0.063	0.06	0.06			
	Capacity Factor	20%	20%	20%	20%	20%			
	Size (MW)	405	525	135	165	150	0	0	30
	Annual Generation (kWh/yr)	1,418,475,413	1,412,478,713	597,630,030	692,633,836	403,565,346			
	Footprint m^2	1,458,000	1,890,000	486,000	451,500	540,000	0	0	27
wind	(acres)	(360)	(467)	(120)	(112)	(133)	0	U	27
l≥	Initial Capital \$M (current)	566	733	189	231	210	0	0	42
	Initial Capital \$M (projected)								
	COE (\$/kWh)	0.02	0.04	0.02	0.02	0.04			
	Capacity Factor	40%	31%	50%	48%	31%			

Scenario Results Summary – FC & H₂

	Scenarios	1. Wind/PV	/ -> H2 -> IT		-> H2 -> IT & PV -> IT	3. Add grid to 2	4.	Natural Gas (NG)->	H2
		TX Site	WA Site	TX Site2	WA Site3	WA Site5	WA Site6	WA Site7	WA Site8
	Size (MW)	60	60	60	60	50	60	60	60
	Annual Generation (kWh/yr)	419,750,000	419,750,000	102,908,450	215,187,945	20,141,200			
2	Footprint m^2 (acres)	In Data Center	In Data Center	In Data Center	In Data Center	In Data Center			
"	Initial Capital \$M (current)	5	5	5.000	5	4	5	5	5
	Initial Capital \$M (projected)								
	Efficiency	50%	50%	50%	50%	50%			
	Capacity Factory			23%	21%	80%			
	Size (MW)	250	480	60	100	10	10	0	50
	Power Consumption (kWh/yr)								
	Water Consumption								
zer	Annual H2 production (kg/yr)	25,820,120	25,740,828	4,400,394	6,711,857	1,204,779			
ļ	Initial Capital \$M (current)	75	144	18	30	3	3	0	60
ecti	Initial Capital \$M (projected)								
	Efficiency	65%	65%	65%	65%	65%			
	Capacity Factory	51%	37%	51%	47%	37%			
	Footprint m^2								
	(acres)								
	Storage Amount (kg)	3,000,000	2,000,000	1,200,000	600,000	60,000	70,000	70,000	150,000
	Initial Capital \$M (current)	375	250	150.00	75	8	9	9	19
F	Initial Capital \$M (projected)								
	Storage Footprint m ²	305,400	203,600	122,160	61,080	6,108			
	(acres)	(75)	(50)	(30)	(15)	(2)			

Scenario Results Summary – System

Scenarios	1. Wind/P\	/ -> H2 -> IT		-> H2 -> IT & PV -> IT	3. Add grid to 24. Natural Gas (NG)->H2			12
	TX Site	WA Site	TX Site2	WA Site3	WA Site5	WA Site6	WA Site7	WA Site8
Total Generation (MW)	545	645	195	235	170	60	68	98
Initial Capital \$M (current)	1,230	1,312	451	445	254	45	79	223
Initial Capital \$M (projected)	682	850	236	290	203	31	58	165
E Estimated Net Present Cost (Billion \$) Current Costs	1.069	1.176	0.392	0.405	0.351	0.283	0.324	0.454
Estimated Net Present Cost (Billion								
\$)	0.618	0.769	0.215	0.262	0.225	0.211	0.247	0.345
Projected Costs (~2030)								
High cost for bar plot	0.451	0.407	0.177	0.143	0.126	0.072	0.077	0.109
Total Footprint (acres)	360	467	126	147	133			32.000

Scenario Results Summary – Costs

Scenarios	1. Wind/P\	/ -> H2 -> IT	-	-> IT & Wind/PV -> T	3. Add g	3. Add grid to 2		
	TX Site	WA Site	TX Site2	WA Site3	TX Site4	WA Site5		
Estimated Capital Cost (Billion \$) Current Costs	1.365	1.365	0.688	0.511	Not Run	0.611		
Estimated Capital Cost (Billion \$) Projected Costs (~2030)	0.775	0.964	0.270	0.330		0.547		
Total Footprint (acres)	360	467	126	147	Not Run	133		
Conclusions	Need to add	Need to add	Need to add	Need to add	Need to add	Need to add		