

# DOE Bioenergy Technologies Office (BETO) 2019 Project Peer Review

Feasibility Study of Utilizing Electricity to Produce Intermediates from CO<sub>2</sub> and Biomass

Josh Schaidle, NREL

March 2019 CO<sub>2</sub> Utilization

This presentation does not contain any proprietary, confidential, or otherwise restricted information

## **Goal Statement**

Goal: Assess the *technical and economic feasibility* of utilizing electricity for (1) the reduction of  $CO_2$  to  $C_1$ - $C_3$  intermediates and (2) the generation and upgrading of biomass-derived intermediates

Outcome: Develop a roadmap for the effective utilization of electricity within existing and emerging biorefinery designs that can guide ongoing research and development activities towards cost reductions and carbon/energy efficiency improvements

- Critical literature review
- Subject matter expert interviews
- Collaboration with experimental projects
- High-level comparative and detailed techno-economic analysis coupled with biorefinery integration

Relevance to Bioenergy Industry: Identify risks and opportunities for leveraging low-cost electricity to improve biorefinery carbon utilization

## Quad Chart Overview

#### Timeline

Project start date: October 1st, 2017

Project end date: September 30<sup>th</sup>, 2020

Percent complete: 47%

|                          | Total<br>Costs<br>Pre<br>FY17 | FY 17<br>Costs | FY 18<br>Costs | Total Planned Funding (FY 19-Project End Date) |
|--------------------------|-------------------------------|----------------|----------------|------------------------------------------------|
| DOE<br>Funded            | N/A                           | N/A            | \$400k         | \$800k                                         |
| Project<br>Cost<br>Share |                               |                | N/A            |                                                |

Related Projects: 2.3.2.106 CO<sub>2</sub> Valorization via Rewiring Metabolic Network; 2.3.1.316 CO<sub>2</sub>

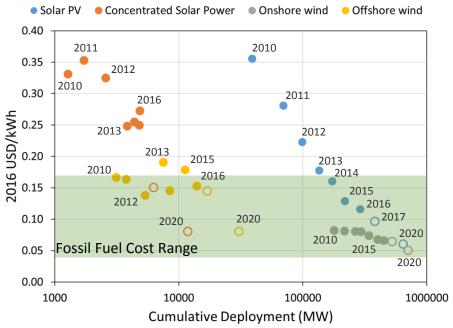
Utilization: Thermo- and Electro-catalytic Routes to Fuels and Chemicals; 2.2.3.500 Electrocatalytic

Oxidation of Lignin Oligomers

#### Barriers addressed

**Emerging BETO Direction:** Develop strategies for adding value to waste gases → Conversion of CO<sub>2</sub> into intermediates for subsequent upgrading to fuels/bioproducts

### Objective


Assess the technical and economic feasibility of utilizing electricity for (1) the reduction of  $CO_2$  to  $C_1$ - $C_3$  intermediates and (2) the generation and upgrading of biomass-derived intermediates

### **End of Project Goal**

By September 2020, through critical literature review, subject matter expert interviews, collaboration with experimental projects, and both high-level comparative and detailed techno-economic analysis coupled with biorefinery integration, this project will develop a roadmap for the effective utilization of electricity within existing and emerging biorefinery designs that can guide ongoing research and development activities towards cost reductions and carbon/energy efficiency improvements

# Project Overview: Convergence of Trends

## Increasing Deployment and Decreasing Costs of Renewable Electricity



IRENA, Renewable Power Generation Costs in 2017

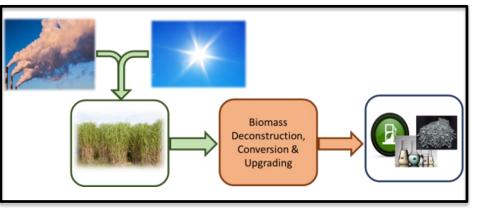
## Future Levelized Costs: \$0.02 - \$0.07/kWh

## Growing Need and Opportunity for Utilizing Gaseous Carbon Waste Streams

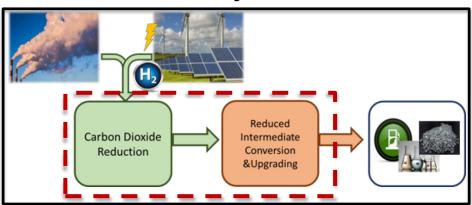


Government, NGO, Industry, Academia, NAS

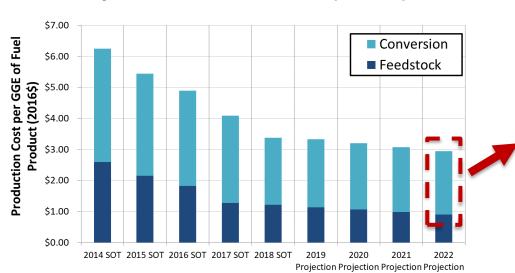
**Ethanol Fermentation** 


 $C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$ 

216 Existing US Biorefineries Emit 45Mt CO<sub>2</sub>/year\*


**Opportunity:** Improve Biorefinery Carbon Utilization

## **Project Overview:** Same Story, Different Starting Point


#### Traditional Biomass System Carbon Flow



#### **Future Vision of Carbon Flow**



#### **Biofuel Production Cost (MFSP)**



**Challenge:** Significant uncertainty exists around cost and technical challenges associated with electrondriven CO2 reduction

# Project Overview: Value Proposition

**Value Proposition:** Guide future R&D by defining the key technical challenges and cost drivers for electron-driven CO<sub>2</sub> reduction

## **Objectives:**

- Assess and characterize technical barriers for electron-driven  $CO_2$  reduction, identify accessible  $C_1$ - $C_3$  intermediates (oxygenates and hydrocarbons), and rank these intermediates based on ease of production
- Perform high-level comparative economic analysis across existing electrondriven CO<sub>2</sub> reduction technologies
- Perform rigorous TEA of selected CO<sub>2</sub> reduction technologies integrated with existing biorefinery designs to evaluate impact on MFSP

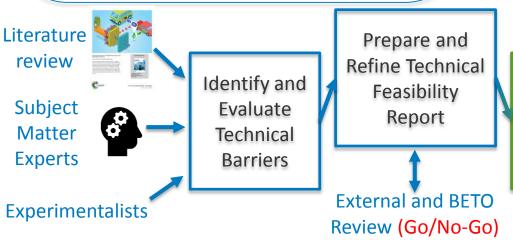
#### **Differentiators:**

- Strict focus on the intersection of electricity and biorefinery streams (CO<sub>2</sub>)
- World-class analysis team with deep expertise in modeling emerging technologies (low TRL) with complex chemistry
- In-house chemical and biological conversion experts

## Management Approach

## Focused on linking technical challenges with major cost drivers

### Task 1: Technical Feasibility


Task Lead: Josh Schaidle

- Perform critical literature review and subject matter expert interviews
- Characterize major technical challenges and highlight critical R&D needs
- Compare existing and emerging technologies based on cross-cutting metrics and TRL

### Task 2: Economic Feasibility

Task Lead: Ling Tao

- Develop process designs for all technology pathways and products
- Perform comparative economic analyses for the integration of CO<sub>2</sub> upgrading strategies with existing biorefinery designs
- Evaluate key process parameters with clear cost implications through sensitivity analyses

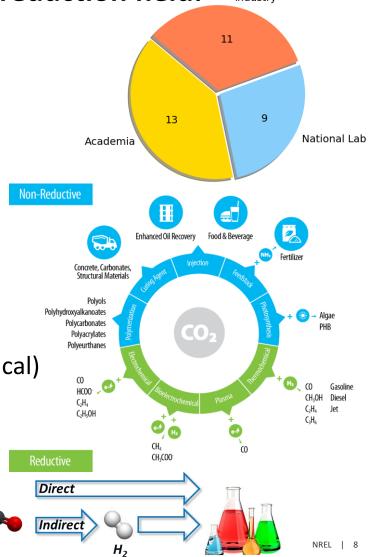


Establish
SOT and
Prepare
Process
Designs

Comparative
Economic
Analysis

Identification of Major Cost

**Drivers** 


Integration with

**Biorefinery** 

NREL | 7

## Technical Approach: Technical Feasibility

- Energy I-Corps Philosophy of "Getting out of the Lab"
  - Interviewed over 30 subject matter experts
  - These experts covered all technologies and spanned from academia to industry
- Cross-cutting Evaluation of Emerging and Existing CO<sub>2</sub> Reduction Technologies
  - Spanned technological approaches (electrochemical, biological, thermochemical)
  - Included both direct and indirect (i.e., H<sub>2</sub>)
     electron utilization
  - Excluded multi-step processing, focused on intermediates
  - Ranked accessibility of products



## Technical Approach: Economic Feasibility

Addressing uncertainty by leveraging world-class analysis team, technical feasibility assessment, and existing industry-vetted models

SOT

Conversion(%

Target

CD (mA/cm<sup>2</sup>)

EE (%)

Build upon prior CO<sub>2</sub>-to-chemicals survey work at NREL in FY16

Identify targeted products for technologies

Guided by technical feasibility report

#### **Establish cases:**

- SOT: Published in open literature
- Target: Attainable process improvements
- Theoretical: Thermodynamic limitations

Perform sensitivity analysis to identify key cost drivers

100 FE (%) Develop Aspen-based process designs Cell Voltage (v) Basis: CO<sub>2</sub> generated from 200MM gallon/y ethanol biorefinery Calculate Minimum Product Selling Price (MSP) Consistent BETO economic assumptions

**Success Factor:** Accurately identify process parameters with greatest impact on cost and connect to technical barriers, then disseminate

## **Progress: Technical Feasibility** Final Report

Successfully captured technical challenges, research needs, and TRL of 5 CO<sub>2</sub> reduction technologies in an externally-reviewed report



|                               |                                                                                       | DIRECT                                                                                                                                        |                                                                                                                      | FLEXIBLE                                                                                                         | INDIRECT                                                                                                      |                                                                                                                                                                       |  |  |
|-------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                               | Elec                                                                                  | trochemical                                                                                                                                   | Bioelectrochemical<br>(MES)                                                                                          | Plasma                                                                                                           | Bioelectrochemical (Fermentation)                                                                             | Thermochemical                                                                                                                                                        |  |  |
|                               | C <sub>1</sub> (TRL: 4–6)                                                             | C <sub>2+</sub> (TRL: 1-3)                                                                                                                    | TRL: 1–3                                                                                                             | (TRL: 1-3)                                                                                                       | TRL: 4-7                                                                                                      | TRL: 5-8                                                                                                                                                              |  |  |
| Technical<br>Challenges       | <ul> <li>Reactor design and scale-up (Near)</li> </ul>                                | High overpotential, low<br>energy efficiency (Long)                                                                                           | Poor fundamental understanding<br>of electron transfer (Long)                                                        | Poor efficiency / low<br>conversion (Long)                                                                       | Poor solubility of reactants<br>(Intermediate)                                                                | Process intensification and scale-<br>down (Intermediate)                                                                                                             |  |  |
| (Timeline)                    | Improved<br>system stability<br>(Intermediate)                                        | <ul> <li>Poor selectivity to individual C<sub>2+</sub> products (Intermediate)</li> <li>Ion transport / pH gradient (Intermediate)</li> </ul> | <ul> <li>Slow CO₂ reduction rates (Long)</li> <li>Product separation and toxicity<br/>(Near)</li> </ul>              | <ul> <li>Low yield to C<sub>2+</sub> products<br/>(Long)</li> <li>Process scale-up<br/>(Intermediate)</li> </ul> | Product separation and<br>toxicity (Near)                                                                     | Developing multi-functional<br>water and CO₂ tolerant catalysts<br>(Intermediate)     The provide a product calculations                                              |  |  |
|                               |                                                                                       | Low single-pass CO <sub>2</sub> conversion (Intermediate)                                                                                     | <ul> <li>Low CO<sub>2</sub> solubility / GDE<br/>compatibility (Intermediate)</li> </ul>                             | High power demands<br>at scale (Long)                                                                            | Improving product selectivity<br>(Near)                                                                       |                                                                                                                                                                       |  |  |
| Critical<br>Research<br>Needs | Transition to gas phase, membrane electrode assemblies Standardized testing protocols | phase, membrane electrode assemblies  Optimizing reaction conditions (electrolyte, pH,                                                        |                                                                                                                      | Development of specialized packed-bed plasma catalysts     Electronics development     Scaling reactor design    | Genetic engineering of microorganisms Systems engineering for improved mixing In-situ separations development | Rapid screening of active materials     Promoter additives to improve catalyst performance     Systems integration and reactor design for efficient process scaledown |  |  |
| Advantages                    | Commercially deployed     Easily combined with downstream upgrading                   | Tunable distribution of over 18+ products     Can have high productivities                                                                    | Capable of forming C-C bonds at ~100% selectivity     Specialized chemistry accessible through genetic modifications | Adaptable to transient usage; quick to reach steady state     Feedstock flexible                                 | Capable of forming C-C<br>bonds at ~100% selectivity     High TRL, deployed<br>commercially                   | Direct access to high volume fuels and chemicals markets     High TRL, deployed commercially at large-scale     Long history of R&D investments                       |  |  |
| Limitations                   | Limited viable products     Suboptimal system durability                              | Wide product range can<br>lead to challenging product<br>separation                                                                           | <ul><li>Low productivity</li><li>Limited number of direct products</li><li>Complicated, poorly understood</li></ul>  | Low TRL     High power requirements     Selectivity challenges                                                   | Poor mass transfer     Limited number of<br>direct products     Large system footprint                        | Challenged economics<br>at small-scale     Competition from<br>non-renewable routes                                                                                   |  |  |

# Progress: Technical Feasibility Direct Electrochemical (EC) Reduction Example

## Identified top technical challenges for direct EC CO<sub>2</sub> reduction:

- Reducing overpotential to limit energy loss
- Forming C-C bonds with high faradaic efficiency
- Reaching commercially-viable durability in industrially-relevant reactors
- Maintaining stable ion concentration (pH) at the interface when operating at commercially-relevant current density

#### **SOT Process Parameters**

## C₁ Products:

Overpotential: 150-1670 mV

Current Density: 0.2 – 870

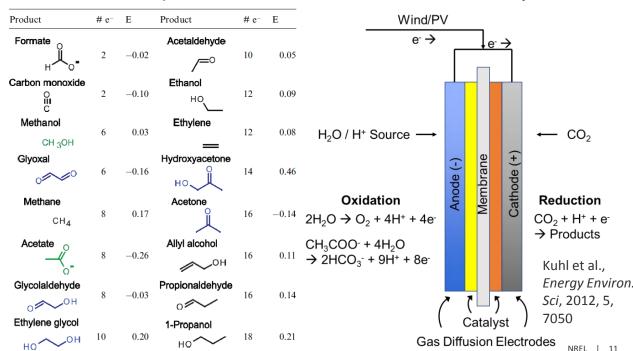
mA/cm<sup>2</sup>

FE: 76 to 99.9%

TRL: 4 - 6

#### **C**<sub>2+</sub> **Products**:

Overpotential: 830 - 1520 mV


Current Density: 0.2 – 170

mA/cm<sup>2</sup>

FE: 0.1 - 55%

TRL: 1 - 3

#### Over 16+ Unique Products



Conversion System

## Progress: Technical Feasibility Evaluating Accessible Products and Ease of Formation

Evaluated 23 products across 5 CO<sub>2</sub> reduction technologies to

assess ease of formation:

- Metrics: Formation rate, selectivity, energy efficiency and TRL
- Identified six products with the highest near-term viability

#### Qualitative Evaluation of Product Ease of Formation

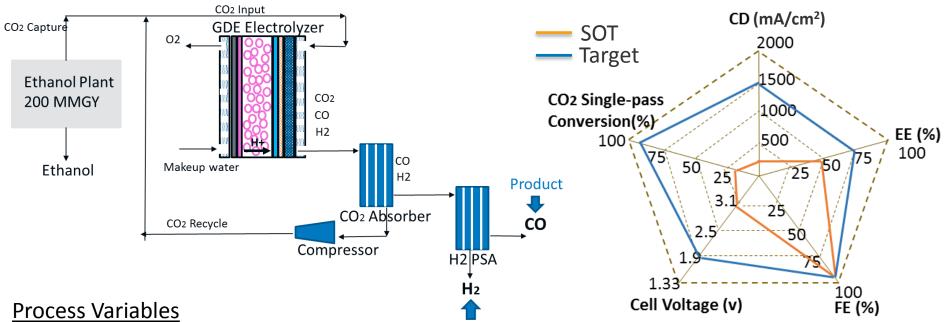
| Species  | Rate of Formation <sup>a</sup> | Selectivity <sup>b</sup> | Energy<br>Efficiency <sup>c</sup> | Current<br>Commercial<br>Level <sup>d</sup> |  |  |
|----------|--------------------------------|--------------------------|-----------------------------------|---------------------------------------------|--|--|
| СО       | High                           | High                     | High                              | High                                        |  |  |
| Ethylene | High                           | Intermediate             | Low                               | Low                                         |  |  |
| Formate  | Intermediate                   | High                     | Intermediate                      | Low                                         |  |  |
| Methane  | High                           | High                     | Intermediate                      | High                                        |  |  |
| Acetate  | Low                            | High                     | Intermediate                      | Low                                         |  |  |
| Methanol | High                           | High                     | High                              | High                                        |  |  |

a: High: >200 mA/cm<sup>2</sup> (or commercial TC), Intermediate: 200 > j > 100 mA/cm<sup>2</sup>,

Low: < 100 mA/m<sup>2</sup>

b: High: >80%, Intermediate 80% > FE > 60%, Low: < 60% c: High: >60%, Intermediate: 60% > EE >40%, Low: <40%

d: High: Operated at TRL > 6, Intermediate: Operated TRL 4-6, Low: Operated TRL 1-3


| Species          | #e- | Pathway    |
|------------------|-----|------------|
| CO               | 2   | EC, TC, P  |
| CO(syngas)       | 2   | EC, TC, P  |
| Formic Acid      | 2   | EC, TC     |
| Carbon Nanotubes | 4   | EC         |
| Methanol         | 6   | EC, TC     |
| Methane          | 8   | EC, TC, BC |
| Acetic Acid      | 8   | EC, BC     |
| Ethylene Glycol  | 10  | EC         |
| Acetaldehyde     | 10  | EC         |
| Dimethyl Ether   | 12  | TC         |
| Ethanol          | 12  | EC, TC, BC |
| Ethylene         | 12  | EC, TC, BC |
| Acetone          | 16  | EC         |
| Propionaldehyde  | 16  | EC         |
| Propylene        | 18  | TC         |
| 1-Propanol       | 18  | EC         |
| Isopropanol      | 18  | BC         |
| Oxalate          | 2   | EC         |
| Glyoxal          | 6   | EC         |
| Glycolaldehyde   | 8   | EC         |
| Hydroxyacetone   | 14  | EC         |
| Propionate       | 14  | ВС         |
| Allyl Alcohol    | 16  | EC         |

## **Progress: Economic Feasibility** Direct EC CO<sub>2</sub>-to-CO Example

## Developed process design and established SOT, Target, and Theoretical Cases

Process Flow Diagram

Key Process and Technology Metrics



**By-Product** 

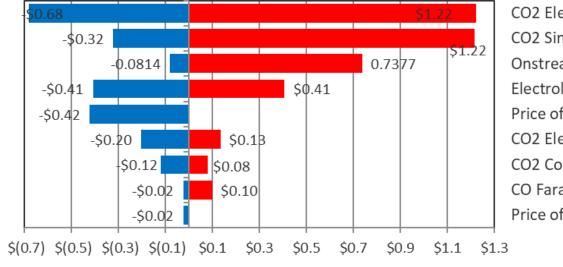
- Cell Voltage
- Current Density
- Faradaic Efficiency CO<sub>2</sub> Capture Cost
- CO<sub>2</sub> Conversion
- Electrolyzer Cost
- Catalyst Lifetime

Compression

By-product Credits

Product Purification

- \*FE=Faradaic Efficiency
- \*EE=Energy Efficiency
- \*CD=Current Density


Theoretical values on the edge

• Electricity Price

## Progress: Economic Feasibility Direct EC CO<sub>2</sub>-to-CO Example

### Calculated MSP for CO and identified major cost drivers

| <b>Minimum Selling Price</b> | SOT Target |       | Theoretical | Market |  |  |
|------------------------------|------------|-------|-------------|--------|--|--|
| \$/MMBtu                     | 169.68     | 21.86 | 7.29        |        |  |  |
| \$/Kg                        | 1.63       | 0.21  | 0.07        | \$0.23 |  |  |



CO2 Electrolysis Current Density, mA/cm2 (1500:250:100)

CO2 Single-pass Conversion, (95%:20%:5%)

Onstream factor (100%:90%:40%)

Electrolyzer Cost, (-50%: 0%: +50%)

Price of electricity, \$/kWh (0:0.068)

CO2 Electrolysis Cell Voltage, V (1.5:3:4)

CO2 Cost, \$/metric ton CO2 (-35:40:90)

CO Faradaic Efficiency (100%: 98%:90%)

Price of O2, \$/metric ton O2 (40:0) ΔMSP (\$/kg)

Base case \$1.63

- Key cost drivers are current density, single-pass CO<sub>2</sub> conversion, onstream factor, electrolyzer cost, and electricity cost
- Potential to be cost-competitive with CO market price

## Relevance: Expanding BETO Feedstock Slate

## Guiding future R&D by defining the key technical challenges and cost drivers for electron-driven CO<sub>2</sub> reduction

 BETO is pursuing strategies for converting gaseous waste streams into revenue-generating streams:

2018 MYP: "BETO is investigating strategies for adding value to waste gases such as biologically derived CO<sub>2</sub>. BETO is exploring catalytic, electrocatalytic, and biological conversion routes to reduce these species into intermediates that can be subsequently converted to fuels and bioproducts."

 This feasibility project supports and advances this effort by:

 Defining critical technology- and productspecific technical challenges and research needs for electron-driven CO<sub>2</sub> reduction

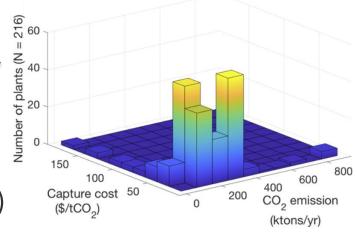
 Identifying major cost drivers and mapping process parameter space that will result in cost reduction, guiding R&D targets

 Integrating with biorefinery models to assess impact on MFSP



## Relevance: Bioenergy Industry

Improving commercial viability by identifying risks and opportunities for leveraging low-cost electricity to improve biorefinery carbon


#### **Ethanol Fermentation**

 $C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$ 

~33% of carbon lost to CO<sub>2</sub> [45Mt/y in US]

#### utilization

60% available for pipeline transport at <\$25/tonne (nearly free if utilized on-site)



\*D. Sanchez, et al., PNAS 115 (2018) 4875.

### **Gasification Carbon Flow**

CO2/CO Reformer and Acid Gas Removal: 22.9%

Biomass Carbon: 100.0%

Unconverted Syngas to Combustor (recycle balance): 6.9%

Dimethyl Ether: 32.9%

C loss during Methanol-to-DME: 4.2%

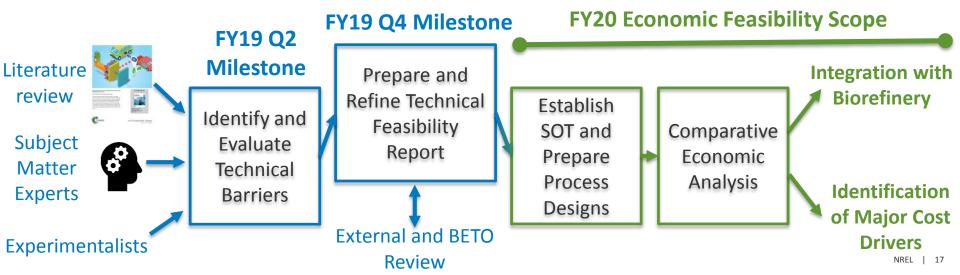
Dimethyl Ether: 32.9%

Greater than one-third of biomass carbon emitted as CO<sub>2</sub>

C utilization is typically most impactful process parameter on overall economics — this project identifies and evaluates routes to improve C efficiency by leveraging low-cost electricity

## Future Work: Technical Feasibility

## Assess the technical feasibility of utilizing electricity to drive the generation and upgrading of biomass-derived intermediates


### Scope:

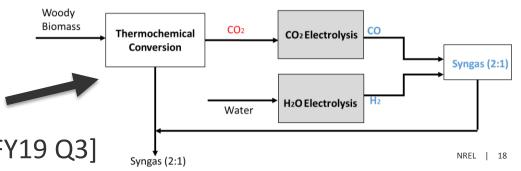
- Identify and characterize technologies
- Focus on processes relevant to existing BETO biomass conversion pathways
- Describe top technical barriers, R&D needs, and TRL

### Direct EC examples:

- Coupled upgrading of CO<sub>2</sub> and ethanol
- Reductive catalytic fractionation of biomass
- Lignin depolymerization and oxidation

#### **Electron-Driven Biomass Conversion**




## Future Work: Economic Feasibility

## Finalize comparative economic analyses for electron-driven CO<sub>2</sub> reduction technologies and products

FY19 Scope:

|                      | Selected Products |     |                |      |                |      |         |     |             |         |     |    |     |
|----------------------|-------------------|-----|----------------|------|----------------|------|---------|-----|-------------|---------|-----|----|-----|
|                      | со                | СН₄ | Formic<br>Acid | MeOH | Acetic<br>Acid | C₂H₄ | Ethanol | DME | Isopropanol | Butanol | РНВ | нс | CNT |
| Electrochemical (EC) | V                 | V   | v              | V    |                | V    | V       |     |             |         |     |    |     |
| Biological (BC)      |                   | V   |                |      | V              |      | V       |     | V           |         | V   |    |     |
| Thermochemical (TC)  | V                 | V   |                | V    |                |      |         | V   |             |         |     | V  |     |
| MES (BC+EC)          |                   | V   | v              |      | V              |      | V       |     |             | V       |     |    |     |
| SOEC (TC+EC)         | V                 | V   |                |      |                |      |         |     |             |         |     |    | V   |

- Disseminate key findings on cost drivers and attainable future targets by publishing results in peer-reviewed journal articles and developing a public-website with powerful visualizations of cost distributions
- Select specific CO<sub>2</sub> utilization
   cases and perform rigorous TEA
   with biorefinery integration to
   evaluate impact on MFSP



## Future Work: Integrated Roadmap

Integrate results across technical and economic assessments to form a R&D roadmap for biorefinery electricity utilization

### Task 1: Technical Feasibility

Described major technical challenges, critical R&D needs, and TRLs for electron-driven CO<sub>2</sub> reduction and biomass conversion/upgrading

#### Task 2: Economic Feasibility

Developed process designs, calculated MSPs, identified major cost drivers, and assessed impact on MFSP for electron-driven CO<sub>2</sub> reduction and biomass conversion/upgrading





**FY20 Outcome:** Develop a roadmap for the effective utilization of electricity within existing and emerging biorefinery designs that can guide ongoing research and development activities towards cost reductions and carbon/energy efficiency improvements

## Summary

Goal: Assess the *technical and economic feasibility* of utilizing electricity for (1) the reduction of  $CO_2$  to  $C_1$ - $C_3$  intermediates and (2) the generation and upgrading of biomass-derived intermediates

**Approach and Progress:** Connecting key technical challenges with major cost drivers as a means to *provide actionable information* to R&D teams within BETO and the broader scientific community

Outcome: Develop a roadmap for the effective utilization of electricity within existing and emerging biorefinery designs that can guide ongoing research and development activities towards cost reductions and carbon/energy efficiency improvements

Relevance to Bioenergy Industry: Identify risks and opportunities for leveraging low-cost electricity to improve biorefinery carbon utilization

## Acknowledgements



**Bioenergy Technologies Office** 

#### **Team members and contributors:**

Ling Tao
Zhe Huang
Gary Grim
Abhijit Dutta
Mike Guarnieri
Jack Ferrell
Randy Cortright

Special thanks to all of our external reviewers and subject matter experts!

## Thank You

www.nrel.gov

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Bioenergy Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.



## Acronyms

- BC Biochemical
- CD Current Density
- EC Electrochemical
- EE Electrical Efficiency
- FE Faradaic Efficiency
- FY Fiscal Year
- GDE Gas Diffusion Electrode
- GGE Gasoline Gallon Equivalent
- MES Microbial Electrosynthesis
- MFSP Minimum Fuel Selling Price
- MSP Minimum Product Selling Price
- P Plasma
- SOEC Solid Oxide Electrochemical Cell
- SOT State of Technology
- TC Thermochemical
- TRL Technology Readiness Level

## Go/No-Go Highlights (June 2018)

In FY18 Q3, we subjected our technical feasibility report to a thorough and critical review by 18 external subject matter experts ranging from industry, national labs, and academia. We asked the reviewers to directly edit and comment on the report and also provided them with a questionnaire that solicited targeted feedback on areas including the strengths and weaknesses of the report, report scope, identification of any data gaps, and to what degree the report would be of value to the CO<sub>2</sub> community. Based on their feedback, we made significant updates to the report and identified components that needed to be further developed over the next few quarters. These components fell into three main categories: (1) additional techno-economic analysis, (2) incorporation of additional pathways, and (3) knowledge dissemination. To-date, we have now performed an economic feasibility assessment, incorporated additional pathways (i.e., plasma), and are preparing two manuscripts for publication (as well as developing a companion website for easy visualization of the economic results).

## Publications, Patents, Presentations, Awards, and Commercialization

#### **Publications:**

 Two manuscripts are in preparation that will present our results of the technical and economic feasibility assessments; these manuscripts are targeted for submission to peerreviewed journals in FY19

#### **Collaborations:**

 We are working with the Global CO<sub>2</sub> Initiative to host a workshop in 2019 to help harmonize technoeconomic analyses and life-cycle assessments in the field of CO<sub>2</sub> utilization