

SETO CSP Program Summit 2019

Corrosion Mitigation for Gen 3 CSP Systems

Brenda L. Garcia-Diaz Luke Olson Chris Dandeneau Michael Martinez-Rodriguez Scott Greenway

energy.gov/solar-office

3/18/2019

Assessment of Cathodic Protection Effectiveness

- Isothermal corrosion for Haynes 230 in MgCl₂-KCl is 35 times higher than the 15 microns per year target
- Non-isothermal corrosion for Haynes 230 with only free convection is over 100 times higher than the target

SEM of Cross-section

- Tests with Mg as a corrosion inhibitor species eliminated weight loss in the samples for static test
- An improved understanding of the long term behavior of systems with Mg corrosion inhibition is needed along with a method to reliably control the amount of Mg present in a system

EDS X-ray maps of cross-section

Potential Monitoring for Corrosion Mechanism in MgCl₂-KCl using Mg

- Corrosion mitigation is thermodynamic and can be monitored looking at sample potential versus a reference electrode
- SRNL used thermodynamic modeling to determine the equilibrium potentials for elements in the system
- The equilibrium potential for Cr oxidation/reduction is near -0.5 V vs. Ag/AgCl in molten chlorides at 850 °C
- Mg has an equilibrium potential of -1.5 V vs. Ag/AgCl and can prevent oxidation of Cr
- Haynes 230 samples in salt with no Mg had potentials that were above -0.5 V for extended periods of time and these samples showed typical corrosion levels
- Haynes 230 samples in salt with Mg had potentials well below -0.5 V for the entire experimental period and these samples showed no statistically significant weight change
- System electrochemical potential increased with operating temperature, which demonstrates that high temperature conditions have the ability to cause more corrosion
- Using reference electrodes can be used for control of redox agents

Introduction: Corrosion Mechanism in MgCl₂-KCl (Previous SRNL SunShot Project)

Task 1.0: Exchange of Samples and Data with Project Cohorts – Comparison Between National Labs

cannot

be

7 966667

3.100000

8 666667

The test of the null hypothesis of

rejected at the 5% significance

level; thus, there is no indication

of a difference in variances

8 600000

3.155556

8 677778

٥

9 0.3160

0 5139

0.4958 9

0.4791

variances

across the three labs.

Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median

F Ratio DFNum DFDen Prob > F

2

2

Comparisons for all pairs using Tukey-Kramer HSD

NREL vs ORNL vs SRNL

NREL

ORNL

SRNL

Test

Levene Bartlett

Level

SRNL A

NREL A

ORNL в

O'Brien[.5]

Brown-Forsythe 0.7593

Means Comparisons

Connecting Letters Report

equal

Tests that the Variances are Equal

0 7174

1.3131

0 7359

Warning: Small sample sizes. Use Caution.

Mean

44.66667

39.80000

-63.56667

3 12 06275

3 4 65224

6 10 97500

Oneway Anova Summary of Fit

Rsquare	0.964734	
Adj Rsquare	0.956898	
Root Mean Square Error	10.20109	
Mean of Response	16.39167	
Observations (or Sum Wgts)	12	

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Laboratory	2	25620.709	12810.4	123.1028	<.0001*
Error	9	936.560	104.1		
C. Total	11	26557.269			

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%	
NREL	3	39.800	5.8896	26.48	53.12	
DRNL	3	-63.567	5.8896	-76.89	-50.24	
SRNL	6	44.667	4.1646	35.25	54.09	

Std Error uses a pooled estimate of error variance

Levels not connected by same letter are significantly different.

NREL vs SRNL

· The test of the null hypothesis of equal means is rejected at the 5% significance level; with the additional test results indicating that SRNL and NREL show no difference in their mean corrosion rates, while both labs are different from ORNL.

Oneway Anova Summary of Fit

Rsquare	0.05035
Adj Rsquare	-0.0853
Root Mean Square Error	11.2964
Mean of Response	43.0444
Observations (or Sum Wgts)	

t Test

SRNL-NREL

Assuming equal variances

Difference 4 867 t Ratio 0.609261 Std Err Dif 7.988 DF Upper CL Dif 23.755 Prob > |t| 0.5616 Lower CL Dif -14.022 Prob > t 0.2808 Confidence $0.95 \operatorname{Prob} \le t$ 0 7192

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Laboratory	1	47.36889	47.369	0.3712	0.5616
Error	7	893.27333	127.610		
C. Total	8	940.64222			

Iean	s for One	eway A	nova		
evel	Number	Mean	Std Error	Lower 95%	Upp

Dever	rumoer		Stu Liivi	Done1 >2 /0	opper 2070
NREL	3	39.8000	6.5220	24.378	55.222
SRNL	6	44.6667	4.6118	33.762	55.572

Std Error uses a pooled estimate of error variance

Tests that the Variances are Equal

Level	Count	Std Dev	MeanAbsDif to Mean	MeanAbsDif to Median
NREL	3	12.06275	8.600000	7.966667
SRNL	6	10.97500	8.677778	8.666667

Test	F Ratio	DFNum	DFDen	p-Value
O'Brien[.5]	0.0522	1	7	0.8258
Brown-Forsythe	0.0185	1	7	0.8956
Levene	0.0004	1	7	0.9849
Bartlett	0.0221	1		0.8819
F Test 2-sided	1.2080	2	5	0.7465

Warning: Small sample sizes. Use Caution.

SETO CSP Program Summit 2019

Subtask 2.1.2: Self-Healing Coatings as Corrosion Inhibitors – Elemental Mapping of H230-G3-SRC-Zr4

- EDX mapping of cross-section confirms formation of Zr coating on Haynes 230
- Affected zone composed of Cr/W-rich region near bulk and Ni/Zr-rich regions closer to edge

Subtask 2.1.2: Self-Healing Coatings as Corrosion Inhibitors – H230-G3-SRC-Zr4 Ni/Zr-rich Region

Subtask 2.1.3: Design and Test a Getter Bed for a Thermosiphon Reactor in Collaboration with ORNL

ORNL provided drawing of old and new natural convection flow loop designs

SRNL provided a corrosion control solution in redesigned ORNL loop

- Potential install location in red
- New flow loop design should be comparable to old design → compare old data with corrosion inhibited
- Two options have been designed
 - Zr getter rod
 - Electrolysis rod apparatus
- Zr rod will reduce corrosion by
 - 1) Galvanic protection
 - Zr rod more anodic than piping \rightarrow corrode first if in electrical contact with loop
 - Zr in salt may coat pipe → galvanic buffer if rod withdrawn
 - 2) Redox control
 - $ZrO \rightarrow ZrCl_2 \rightarrow ZrCl_3 \rightarrow ZrCl_4$ occur prior to Cr oxidation \rightarrow buffer against $CrO \rightarrow Cr^{2,3+}$
- Mg Electrolysis (in situ)
 - 1) Galvanic protection
 - Galvanic protection capability, can coat some walls if below melting point
 - Mg⁰ is soluble (small) in the salt \rightarrow buffer. May also present some galvanic protection
 - 2) Redox control
 - Mg⁰→Mg²⁺ will prevent Cr⁰→Cr^{2,3+}
 - Mg⁰ is soluble (small) in the salt, and this solubility will act as a buffer.
 - 3) Oxide sink: MgO \rightarrow most stable oxide in system

Subtask 2.1.3: Design and Test a Getter Bed for a Thermosiphon Reactor in Collaboration with ORNL

Subtask 2.1.3: Design and Test a Getter Bed for a Thermosiphon Reactor in Collaboration with ORNL

