High-Temperature Particle-to-sCO2 Heat **Exchanger**

SuNLaMP 1507

Presented by: Clifford K. Ho Sandia National Laboratories Concentrating Solar Technologies Dept.

Contributors: Kevin J. Albrecht Matthew Carlson Solex Thermal Science Vacuum Process Engineering

SAND2019-XXXX

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Exceptional service in the national interest

2

Introduction

 High-temperature particle receivers are being pursued to provide heat for sCO2 Brayton cycles

Problem Statement

- Particle-to-sCO2 heat exchangers do not exist
 - $sCO2 \ge 700 \ ^{\circ}C at \ge 20 \ MPa$
- Challenges
 - Particle-side heat transfer
 - Thermomechanical stresses
 - Materials
 - High operating temperatures and pressures
 - Erosion
 - Costs

Solarized sCO2 recompression Brayton cycle

Objectives and Approach

- Evaluate and downselect among alternative designs using Analytic Hierarchy Process (Ho et al., 2018)
- Construct, and test prototype particle heat exchanger that can heat sCO2 to 700 °C at 20 MPa for 100 kW prototype
- Integrate final design with Sandia's falling particle system

Heat Exchanger	Advantages	Disadvantages
Fluidized Bed (Babcock & Wilcox)	High heat-transfer coefficients	Energy and mass loss from fluidization
Moving packed bed - shell/tube (Solex Thermal Science)	Gravity-fed particle flow; low erosion	Low particle-side heat transfer
Moving packed bed - (shell/plate (Vacuum Process Engr)	High potential surface area for particle contact; low erosion	Requires diffusion-bonding of plates

Key Outcomes and Impact

- Teamed with industry to design fluidized and movingpacked-bed particle/sCO2 heat exchangers
- Measured particle/wall heat transfer coefficient at ~200 W/m²-K for shell-and-plate design
- Performed particle flowability tests at 600 °C
- Designed 100 kW_t sCO2 flow system for integration with heat exchanger
- Impact: Demonstration of first solarized heating of sCO₂ using particles (summer 2019)

Integrated System

6

Questions?

Cliff Ho, (505) 844-2384, ckho@sandia.gov

Technical Challegnes

Design Criteria	Notes	
Cost	Want low cost of prototype and larger scale systems (< $150/kW_t$)	
Heat Transfer Coefficient	Want large overall heat transfer coefficient (>100 W/m ² -K)	
Structural Reliability	Want maximum allowable working pressure > 20 MPa at minimum design metal temperature of 750 C; long-term reliability	
Manufacturability	Want ease of manufacturing and demonstrated ability to build	
Parasitics & Heat Losses	Want low power requirements, pressure drop, and heat losses	
Scalability	Need to be able to scale up to \sim 20 MW _t thermal duty	
Compatibility	Can be readily integrated with particle receiver and sCO2 flow loop	
Erosion & Corrosion	Want to minimize thinning of walls and tubes from particle and sCO2 flow; need to ensure 30 year lifetime	
Transient Operation	Want to minimize transient start-up and impact of thermal stresses	
Inspection Ease	Want ability to inspect internals of the heat exchanger to evaluate corrosion, erosion, fatigue, etc.	