1697-1503

Gen 3 Particle Pilot Plant (G3P3):

Integrated High-Temperature Particle System for CSP Exceptional service in the national interest

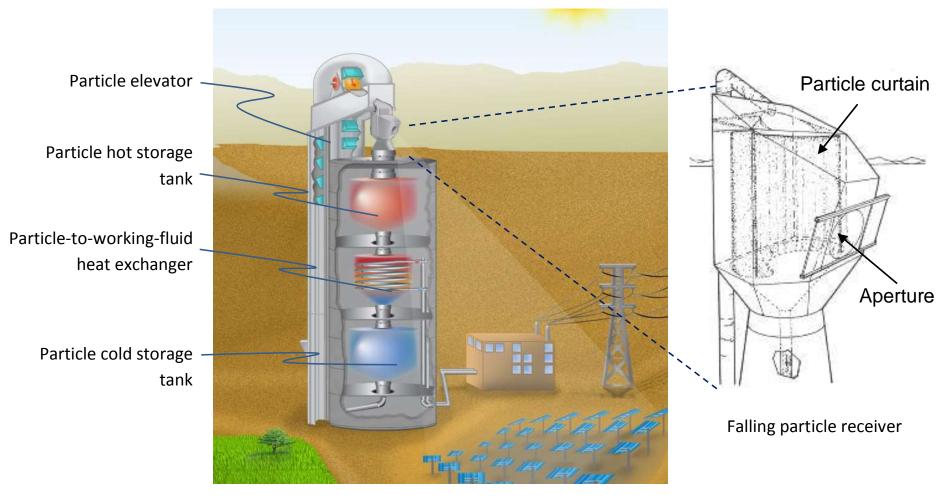
PI: Clifford K. Ho Concentrating Solar Technologies Dept. Sandia National Laboratories Albuquerque, New Mexico <u>ckho@sandia.gov</u>, (505) 844-2384

SAND2019-2619 PE

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

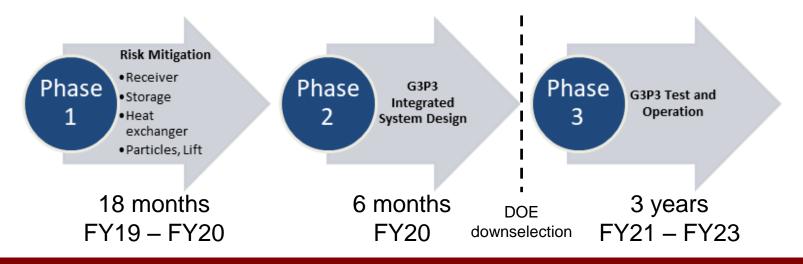
Introduction to the Team

Role	Team Members				
PI / Management	Sandia National Labs (PI, PMP, financial, facilities)				
R&D / Engineering	 Sandia National Laboratories Georgia Institute of Technology King Saud University German Aerospace Center CSIRO U. Adelaide Australian National University CNRS-PROMES 				
Integrators / EPC	 EPRI Bridgers & Paxton / Bohannan Huston INITEC Energia 				
CSP Developers	SolarDynamicsSolarReserve (Bruce Kelly)				
Component Developers / Industry	 Carbo Ceramics Solex Thermal Science Vacuum Process Engineering FLSmidth Materials Handling Equipment Allied Mineral Products Matrix PDM 				
Utility	Saudi Electricity Company				


Overview

- Objectives and Value Proposition
- Key Technical Risks (Phases 1 and 2)
- Key Technical Risks (Phase 3)
- Conclusions

High Temperature Falling Particle Receiver


 \square

Goal: Achieve higher temperatures, higher efficiencies, and lower costs

G3P3 Objectives

- De-risk, design, construct, and operate a multi-MW_t particle receiver system
 - Heat working fluid (e.g., sCO2 or air) to ≥ 700 °C
 - 6 hours of energy storage
 - > 2,000 hours of on-sun operation
 - Meet SunShot cost and performance goals
- Leverage international expertise and CSP activity
- Accelerate **commercialization** of G3P3 technology

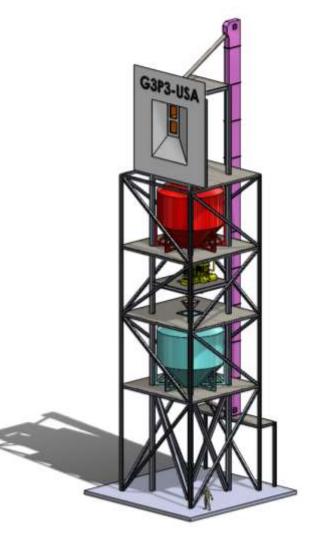
Advantages of particle Power

Value Proposition

- Wider temperature range than molten salts (subzero to >1000 °C)
 - Enables more efficient power cycles
 - No freezing or decomposition; avoids costly heat tracing
- Use of inert, non-corrosive, inexpensive materials
- Direct heating of particles vs. indirect heating of tubes
 - Higher solar fluxes for increased receiver efficiency
 - Can control particle outlet temperatures instantaneously; no thermal inertia from tubes and headers
- Direct storage of hot particles
 - Reduced costs without extra heat exchangers and separate storage media

CARBO ceramic particles ("proppants")

Overview


- Objectives and Value Proposition
- Key Technical Risks (Phases 1 and 2)
- Key Technical Risks (Phase 3)
- Conclusions

Component Risks and Features

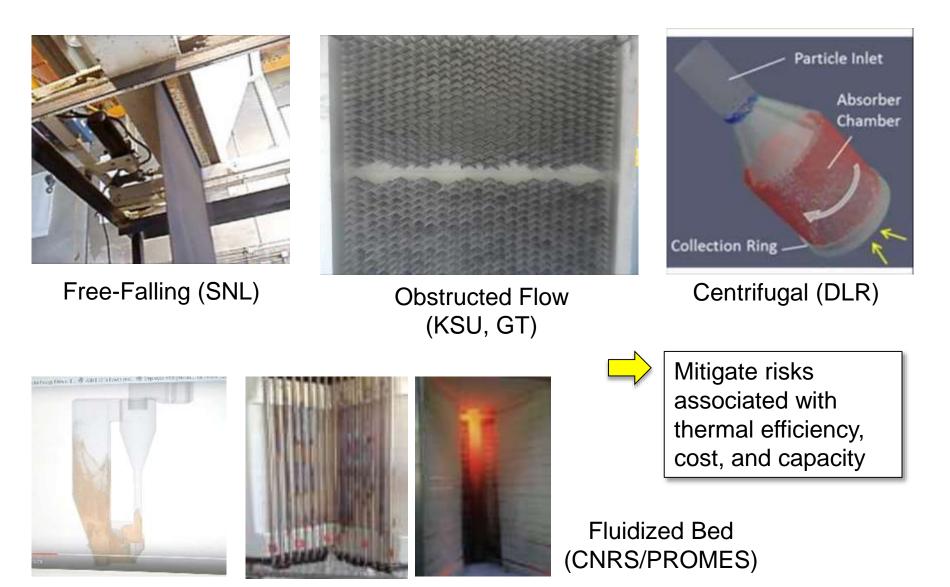
- Particles
- Receiver and Feed Bin
- Particle Storage
- Particle Heat Exchanger
- Particle Lift and Conveyance
- Balance of System

Particles

- Cost
 - ≤ \$1/kg
- Durability
 - Low wear/attrition
- Optical properties
 - High solar absorptance
- Flowability, low erosion
- Inhalation hazards (e.g., silica, PM2.5)

HSP 30/50

Sandia National Laboratories


Receiver

- Thermal efficiency
 - Minimize convective/radiative heat loss
- Particle mass flow control
 - Maintain particle outlet temperature
- Damage/overheating of refractory receiver walls
- Particle emissions
 - Inhalation or pollution hazard

Particle Receiver Designs

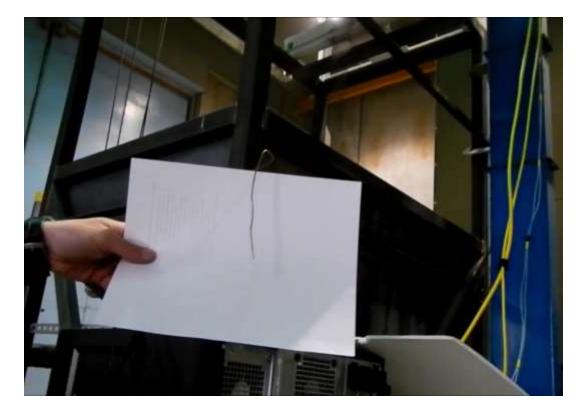
Receiver Innovations Multistage Release

- Increases particle curtain opacity
 - Mitigates dispersion with longer drop distances
- Reduces particle loss and impact of wind
- Scalable to commercial systems 10 – 100 MW_e

From Jin-Soo Kim (CSIRO)

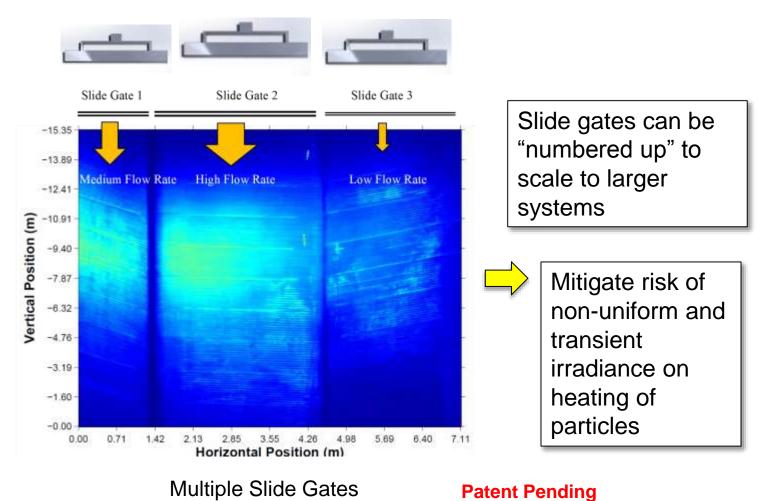
Free Falling

Staged Falling


Receiver Innovations Automated Particle Mass Flow and Temperature Control

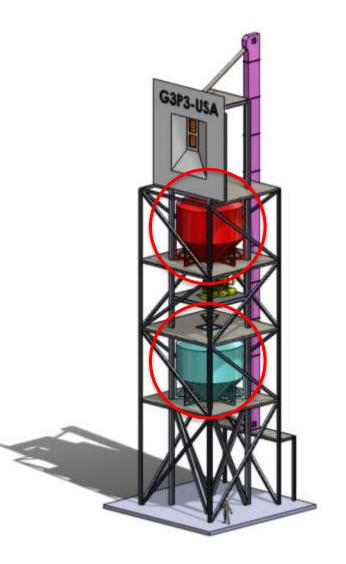
 $\dot{Q} = \dot{m}c_p \Delta T$

Mitigate risk of variable DNI on particle outlet temperature

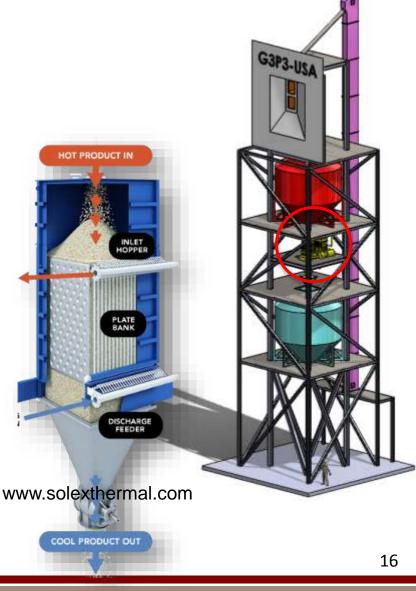

Automated Particle Flow and Temperature Control

Patent Pending

Receiver Innovations


Automated Particle Mass Flow and Temperature Control

Storage System

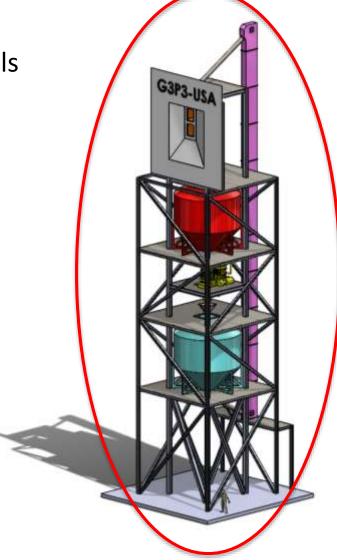


- Minimize heat loss during storage, charging, and discharging
 - Robust, cost-effective insulation
- Minimize abrasion on interior of storage bin at temperature
 - Abrasion-resistant materials
 - Low-cost materials
- Minimize thermomechanical stresses
 - Ability to vertically stack at larger scales

Particle-to-sCO₂ Heat Exchanger

- Heat transfer from particles to high-pressure working fluid
 - Shell-and-plate design
 - Fluidization (G. Jackson)?
- Thermomechanical stresses / fatigue
- Erosion
- Cost
- 100 kW_t prototype
 - Sandia, Solex and VPE have developed a moving packed-bed heat exchanger design for particle-to-sCO₂ heat transfer

Particle-to-sCO2 Heat Exchanger

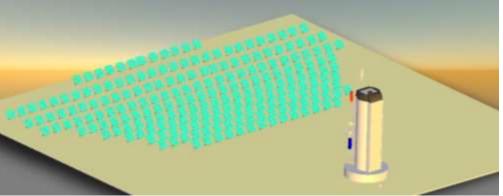


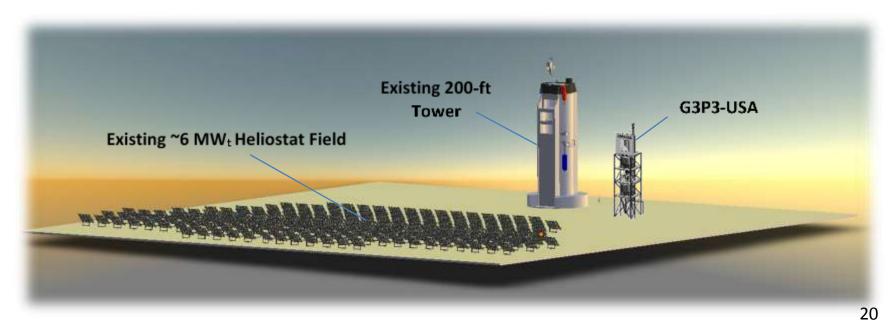
Balance of System

System instrumentation and controls

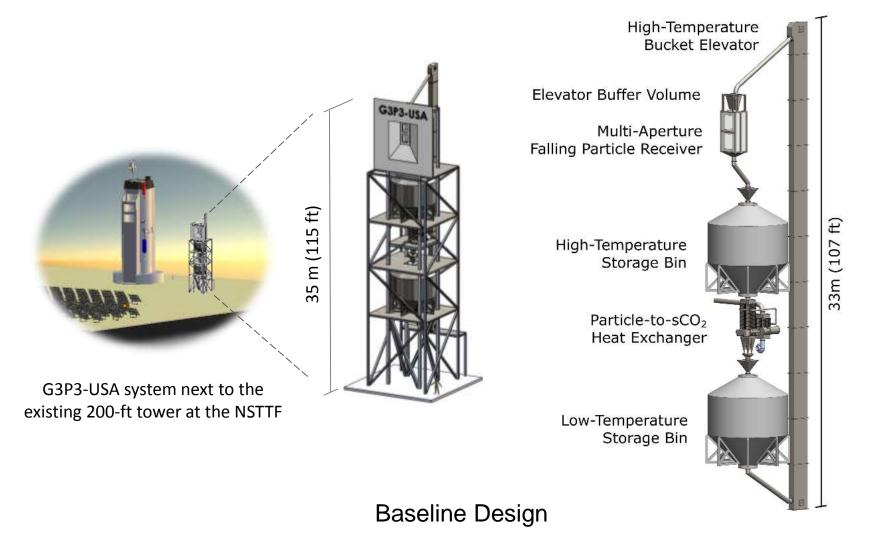
- Diagnostics
- Bypass valves for startup/shutdown
- Isolation valves for maintenance and emergency shutdown
- Particle mass flow monitoring
- Particle level sensing
- Duct work
 - Differential thermal expansion
 - No need for hermetic seals

Overview




- Objectives and Value Proposition
- Key Technical Risks (Phases 1 and 2)
- Key Technical Risks (Phase 3)
- Conclusions

Gen 3 Particle Pilot Plant (G3P3) Integrated System


National Solar Thermal Test Facility (NSTTF), Albuquerque, NM

Gen 3 Particle Pilot Plant (G3P3) Integrated System

Phase 3 Risks to be Retired

- Continuous operation of fully integrated thermal system (up to 10 hours per day)
- Start-up requirements and ramp times with diurnal cycling
- 10 hours of deferred storage with ability to produce 6 MWh of energy using sCO2 at desired turbine inlet temperature of ≥700 °C
- Transient procedures to maintain desired particle-receiver outlet temperatures and sCO2 turbine inlet temperature
- Acceptable levels of particle attrition and loss during long-term operation that meet OSHA and EPA standards and cost metrics
- Sufficient heat transfer coefficient and manufacturing technique capable of achieving heat exchanger cost targets

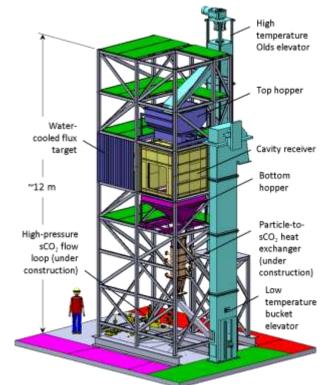
Construction Challenges

- Timeline (many vendors and novel components coming together in one system)
- Construction sequencing to install components (storage bins, heat exchanger) during the construction process or build in place
- Assembly or construction of the storage tanks on the tower support structure
 - Use of pre-cast refractory sections? Sprayed on site?
- Meeting \$25M budget allowance
 - Preliminary cost estimates and quotes are tight

Things we have already demonstrated

- Ability to continuously operate and recirculate particles through Sandia's falling particle receiver system during hundreds of hours of on-sun tests
 - Reliable high-temperature particle conveyance (commercially available)
 - Reliable and accurate particle flow control
 - High temperature particle valves (isolation and diverter)
 - Accurate measurement of particle mass flow rate
 - Storage and hopper design for particle inventories ~1000 kg
- Ability to heat particles to ~800 °C with fluxes up to 1500 suns
- Ability to achieve receiver thermal efficiencies > 80%
- Excellent durability of particles; no significant wear on equipment
- Good flowability through shell-and-plate heat exchanger with anticipated particle-side heat transfer coefficient > 200 W/m²-K

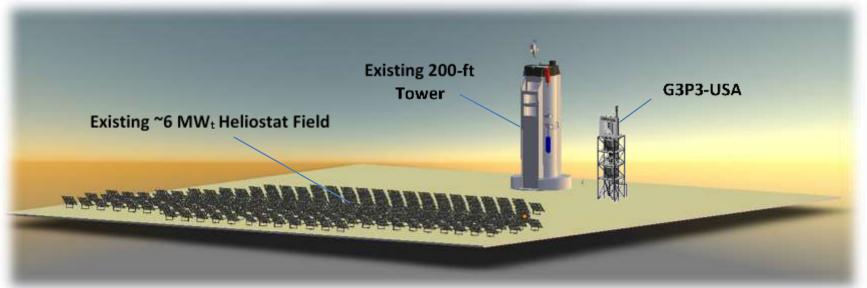
Overview


- Objectives and Value Proposition
- G3P3 System Overview
- Gaps and Risks
- Conclusions

1697-1503

Gen 3 Particle Pilot Plant (G3P3)

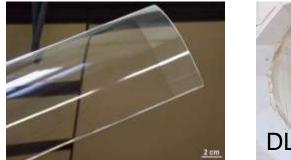
- Significant advantages
 - Direct heating of particles
 - Wide temperature range (sub-zero to >1000 °C)
 - Inexpensive, durable, non-corrosive, inert
 - Demonstrated ability to achieve >700 °C on-sun with hundreds of hours of operation
- Technical risks
 - Transient operation of fully integrated system
 - Heat loss and efficiencies (receiver, storage, heat exchanger, lift)
 - Particle-to-working-fluid heat transfer
 - Thermomechanical stresses in heat exchanger and storage tanks
 - Particle attrition and wear; dust formation



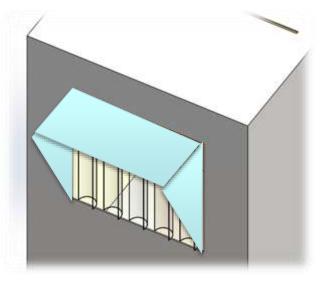
On-sun testing of the falling particle receiver at Sandia National Laboratories

Questions?

Cliff Ho, (505) 844-2384, ckho@sandia.gov


BACKUP SLIDES

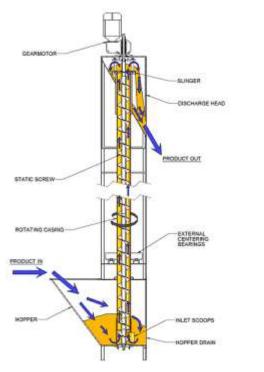
Receiver Innovations Aperture Covers / Wind Diverters

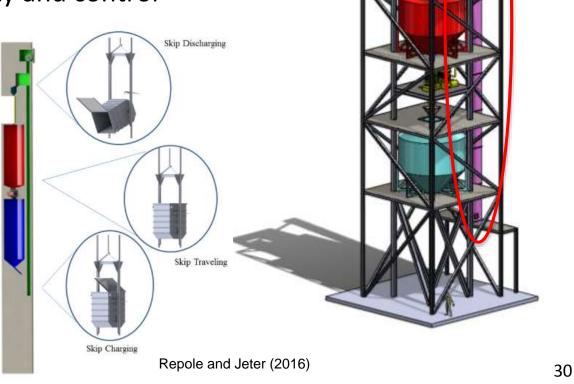

- Quartz glass transmits solar radiation but creates a barrier to thermal radiation loss, wind, and convection loss
- Soiling of glass windows and reflective losses are challenges
 - Use quartz half-shells with spacing
 - Integrate with air curtain to reduce soiling

Mitigate risks of radiative/convective heat losses and particle losses while reducing reflective losses and soiling

Patent Pending

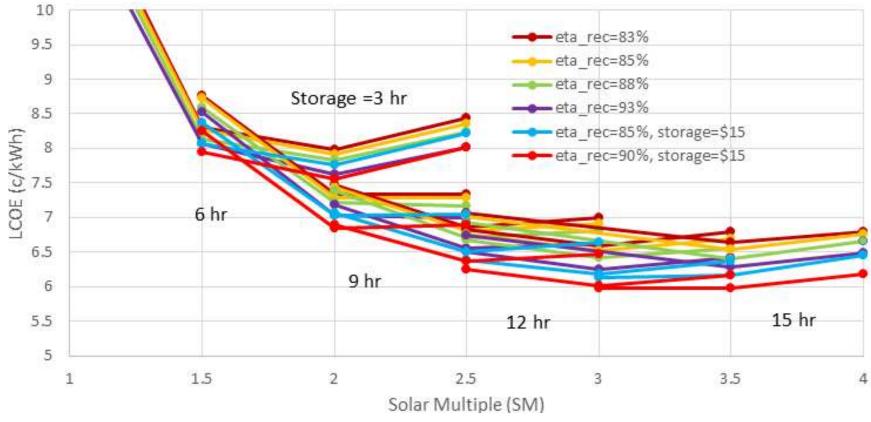
1697-1503



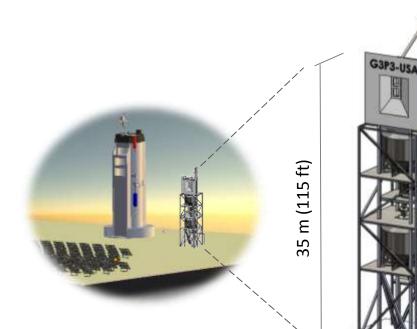

Particle Lift

G3P3-USA

- Low particle abrasion and attrition
- High efficiency
- Insulation for minimal heat loss
- Sufficient flow capacity and control



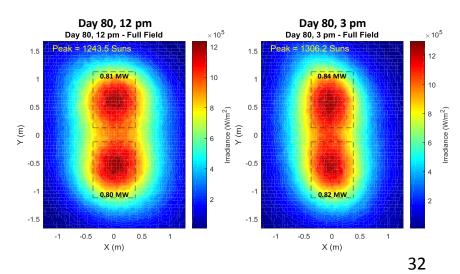
Economics of Commercial Scale System


SAM Modeling of LCOE for 100 MW_e Particle Power Tower

Particle receiver and storage costs from [15] were used except where noted. All other costs assume SunShot targets.



G3P3-USA



G3P3-USA system next to the existing 200-ft tower at the NSTTF

1697-1503

CARBO HSP particle plume dispersion 2 m/s west wind (right to left)

Fines (1-10 microns) emitted as gas at 5e-7 kg/s

350 micron particles emitted at 0.003 kg/s

Properties of Alternative Particles

Silica sandSiO22,6101,000Stable, abundant, low costLow solar absorptivity a conductivity inhalation ristAluminaAl2O33,9601,200StableLow absorptivity a conductivity			Prop	Properties		
Silica sandSiO22,6101,000Stable, abundant, low costabsorptivity a conductivity inhalation risAluminaAl2O33,9601,200StableLow absorptivity a conductivity720 atStable	Material	Composition	-	-	Advantage	Dis-advantage
720 at Stable	Silica sand	SiO ₂	2,610	1,000	abundant,	Low solar absorptivity and conductivity; inhalation risk
SiO ALO I 720 at Stable, Identify quited	Alumina	Al ₂ O ₃	3,960	1,200	Stable	Low absorptivity
	Coal ash	SiO ₂ , Al ₂ O ₃ , + minerals	2,100	ambient	abundant,	Identify suitable ash, attrition
Calcined Flint ClaySiO2, Al2O3, TiO2, Fe2O32,6001,050Mined abundantLow absorptivity attrition		2, 2, 3,	2,600	1,050		absorptivity,
Ceramic particles75% Al_2O_3, 11%SiO_2, 9%Fe_2O_3,3%TiO3,3001,200 (at 700°C)High solar absorptivity, stableRelatively higher cost		11%SiO ₂ , 9%Fe ₂ O _{3,} 3%TiC	3,300	· 、	absorptivity,	Relatively higher cost

Mitigate risks of attrition, high cost, and low heat absorption