

The Potential Role of Concentrating Solar Power within the Context of DOE's 2030 Solar Cost Targets

Caitlin Murphy, Yinong Sun, Wesley Cole, Galen Maclaurin, Craig Turchi, Mark Mehos

DOE Solar Energy Technology Office Summit March 18, 2019

Presentation based on https://www.nrel.gov/docs/fy19osti/71912.pdf

What are the potential impacts of simultaneously achieving DOE's 2030 cost targets for PV and CSP-TES?

SunShot PV Progress and Goals

*Levelized cost of electricity (LCOE) progress and targets are calculated based on average U.S. climate and without the ITC or state/local incentives. The residential and commercial goals have been adjusted for inflation from 2010-17.

SunShot CSP Progress and Goals

Figure source: https://www.energy.gov/eere/solar/goals-solar-energy-technologies-office

Approach: Capacity Expansion Modeling

Scenario analysis to evaluate the potential impacts of simultaneously achieving the 2030 cost targets for PV and CSP-TES through long-term capacity expansion modeling, which simulates the expansion and operation of the U.S. generation and transmission systems through 2050

National Solar Radiation Database (NSRDB)

<u>Regional Energy Deployment</u> <u>System (ReEDS) model</u>

Representing DOE's Cost Targets for CSP-TES

- DOE's 2030 cost target for CSP-TES assumes
 50%-80% reductions in the solar field and TES material costs
- Cost reductions after 2030 represent technology learning and/or improvements that could result from innovation

https://www.nrel.gov/docs/fy19osti/71912.pdf NREL | 4

Achieving DOE's 2030 solar cost targets could drive an expansion of installed solar capacity by 2050

https://www.nrel.gov/docs/fy19osti/71912.pdf NREL | 5

Achieving DOE's 2030 solar cost targets could expand the geographic distribution of economic solar deployment

The ReEDS model finds the highest-value in low-cost CSP-TES plants that have high-capacity factor configurations

https://www.nrel.gov/docs/fy19osti/71912.pdf

Low-cost CSP-TES provides firm energy value

- CSP-TES generation is highest during the evening and overnight hours in low-cost solar scenarios
- This result highlights the importance of thermal energy storage, which offers *flexibility* and allows CSP-TES to provide dispatchable generation when the sun is down

Average dispatch (operation) of the system in 2050

CSP-TES deployment results are sensitive to many technology cost and fuel price assumptions

https://www.nrel.gov/docs/fy19osti/71912.pdf

The magnitude and extent of solar installations depend on future costs for advanced energy storage

Assuming low-cost battery storage results in increased deployment of PV capacity across the contiguous United States, and a corresponding decrease in CSP-TES capacity

Summary of Key Findings

- Solar electricity generating capacity could grow significantly by 2050 if DOE's 2030 solar cost targets are achieved
- The geographic extent of economic solar deployment could expand across the contiguous United States, particularly for low-cost CSP-TES
- CSP-TES is primarily deployed in a highly dispatchable, high-capacity factor configuration, which allows CSP-TES to provide valuable services to the grid
- The assumed price trajectories of natural gas and advanced energy storage have pronounced impacts on the magnitude and geographic extent of low-cost CSP-TES deployment

Thank You

www.nrel.gov

Funding provided by the DOE Office of Energy Efficiency and Renewable Energy Solar Energy Technologies Offices

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

The ReEDS model finds the highest-value in low-cost CSP-TES plants that have high-capacity factor configurations

The modeled dispatch of CSP-TES varies regionally, largely following the quality of solar resource

High- and Mid-Solar Resource Regions:

Low and Mixed-Solar Resource Regions:

https://www.nrel.gov/docs/fy19osti/71912.pdf

Approach: Solar Resource for CSP-TES

- This analysis assigns a lower threshold for the direct normal irradiance (DNI) of 5 kWh/m²/day for CSP-TES, while new PV capacity is considered throughout the contiguous United States
- The resulting broad geographic extent of available resource for CSP-TES is shown here:

Approach: Scenario Design & Cost Inputs

Scenario	CSP Cost	PV Cost	Battery Cost
"ATB Mid"	ATB Mid	ATB Mid	Mid Cost
"LowCost-CSP"	Low Cost CSP	ATB Mid	Mid Cost
"LowCost-CSP-PV"	Low Cost CSP	Low Cost PV	Mid Cost
"LowCost-CSP-PV-Storage"	Low Cost CSP	Low Cost PV	Low Cost

NREL | 16

Approach: Representing DOE's Cost Targets for CSP-TES

- The assumed costs for individual components are *not* inherently required for achieving the 2030 cost targets for CSP-TES
- This figure demonstrates multiple • pathways for achieving a similar LCOE through combinations technology advances, economies of scale associated with increased manufacturing, improved supply chain efficiencies, reduced O&M costs, and/or more favorable financing terms for CSP-TES plants

Solar's share of the capacity and generation mixes

Key Finding: Achieving DOE's 2030 solar cost targets could result in solar playing a larger role in the capacity and generation mixes

Deployment of low-cost CSP-TES begins in high-resource regions, but eventually expands to lower-resources

- The first new low-cost CSP-TES installations come online in the late 2020s, at a rate of 1–2 GW per year
- New low-cost CSP-TES capacity in mid-solar resource is delayed by a few years, but follows a similar growth trajectory through 2050
- Low-cost CSP-TES eventually becomes cost-competitive in even low-solar resource

https://www.nrel.gov/docs/fy19osti/71912.pdf

Results for the scenario that represents the achievement of DOE's 2030 solar cost targets

The ReEDS model finds the highest-value found for CSP-TES plants that have high-capacity factor configurations

Sensitivity to advanced energy storage cost assumptions

Difference in Average Electricity Dispatch (2050): LowCost-CSP-PV-Storage – LowCost-CSP-PV

Direct competition between CSP-TES and the combination of low-cost PV and batteries is also apparent in the average dispatch patterns, and reflects the similar services provided by CSP-TES and the combination of low-cost PV and batteries.

> Preliminary Results—Do Not Distribute or Cite

Summary Results: Main Low-Cost Solar Scenarios

		Capacity (GW) ^b			Penetration (% of Generation)		
Scenario	Technology	2030	2040	2050	2030	2040	20 50
ATB Mid ^a	CSP-TES	1.9	1.9	0.5	0	0	0
	PV ^c	220	319	489	10	13	18
	Total solar	221	321	489	10	13	18
	Battery storage ^d	0	0.8	2.8	0.0	0.0	0. 1
LowCost-CSP	CSP-TES	7	46	158	1	5	16
	PV	216	301	425	10	12	15
	Total solar	223	346	582	10	17	31
	Battery storage	0	0	0.5	0.0	0.0	0. 0
LowCost-CSP-PV	CSP-TES	6	42	135	1	5	14
	PV	469	720	1,020	20	27	33
	Total solar	475	761	1,155	21	32	47
	Battery storage	0	0	2	0.0	0.0	0. 1
LowCost-CSP-PV- Storage	CSP-TES	6	13	25	1	1	3
	PV	466	815	1,321	20	33	47
	Total solar	472	828	1,346	21	34	50
	Battery storage	5	73	199	0.3	3.4	9. 2

^a Values for the ATB Mid scenario are based on the 2017 ATB.

Summary Results: Sensitivity Scenarios

			CSP-TES Penetration		
	CSP-TES Ca	apacity (Gw)	(% of Electricity Supplied)		
Scenario Set	2030	2050	2030	2050	
LowCost-CSP-PV	6.4	135.1	0.7	13.9	
Low Natural Gas Price	5.9	35.9	0.7	3.8	
High Natural Gas Price	6.6	256.8	0.7	25.2	
Low-Cost Renewables	4.2	99.0	0.4	10.1	
High-Cost Renewables	6.6	143.8	0.7	14.7	
Low-Electricity Demand	5.4	101.5	0.6	11.5	
High-Electricity Demand	6.6	162.5	0.7	15.2	
Truncated Conventional Generator Lifetimes	5.7	147.0	0.6	14.9	
Extended Conventional Generator Lifetimes	6.4	127.4	0.7	13.1	

Summary Result: Optimal CSP-TES Configurations Across Select Low-Cost Solar Scenarios

The need for additional transmission capacity is largely consistent with historical build-out rates

higher than the baseline scenario, which corresponds to a ~10% increase in transmission capacity relative to current levels.

Preliminary Results—Do Not Distribute or Cite

Geographic distribution of new transmission capacity

Preliminary Results—Do Not Distribute or Cite