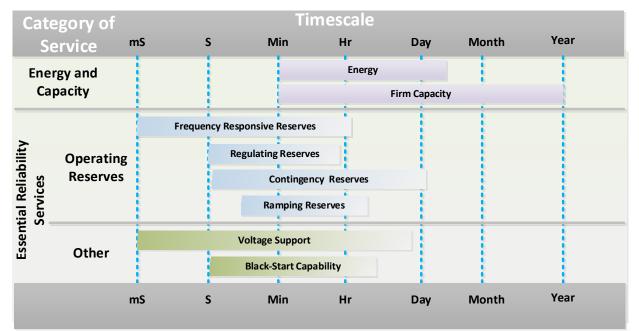


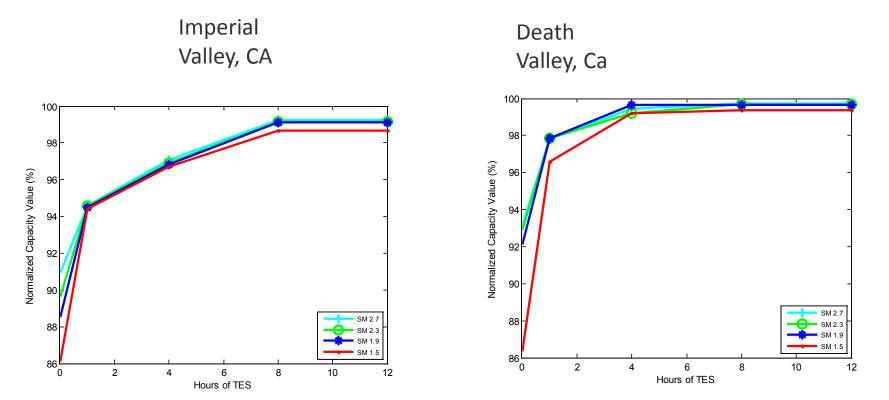
### **Maximizing The Value of Concentrating Solar Power**


Paul Denholm

DOE Solar Energy Technology Office Summit March 18, 2019 How Can CSP Maximize Value By Providing Grid Services?

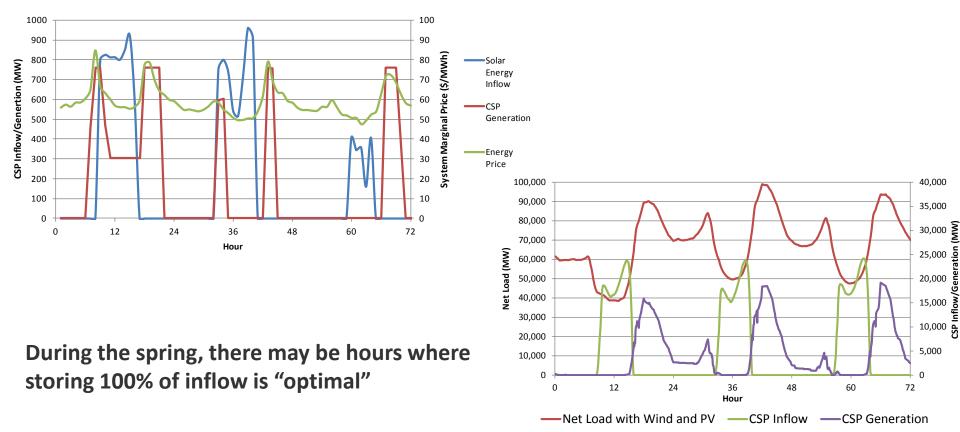
- Energy and Capacity
- Operating Reserves
- Other Essential Reliability Services

### **Current Grid Services**


- We separate energy and capacity services into one category and group the remaining services into a general essential reliability service (ERS) category.
- ERSs are further subdivided into operating reserves and other ERSs.



The Majority of Value Will Be Obtained from Energy and Capacity


- Maximize energy flexibility
- Ensure high capacity value

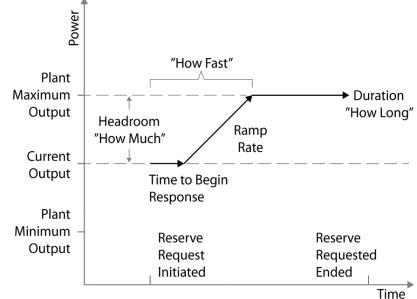
### Capacity Credit of CSP-TES



### Maximizing Energy Flexibility

Optimal dispatch of CSP in a future scenario with additional PV.




### **Operating Reserves**

Defined as the capability above firm system demand required to provide for regulation, load forecasting error, equipment forced and scheduled outages, and local area protection.

Distinctions can be characterized by three factors:

- How much
- How fast
- How long

There are no uniform definitions for various operating reserve products.



### Timescales of Operating Reserve Requirements

| Timescale                                                   |                         |                             |                           |               |         |                                      |
|-------------------------------------------------------------|-------------------------|-----------------------------|---------------------------|---------------|---------|--------------------------------------|
|                                                             | nS :                    | s M                         | in                        | Hr            | Day     |                                      |
| 4 -                                                         | Inertial Res            | ponse                       |                           |               |         |                                      |
| 1. Frequency<br>Responsive<br>Reserves                      | Pr                      | <mark>imary Freq</mark> uen | <mark>cy Resp</mark> onse |               |         | Services                             |
|                                                             | Fast Frequency Response |                             |                           |               |         | currently<br>not                     |
| 2. Regulating<br>Reserves                                   |                         | Regulating Re               | eserves                   |               |         | procured<br>via markets              |
| 3. Contingency<br>Reserves                                  |                         | Spinning                    | Reserves                  |               |         | Proposed<br>or early                 |
|                                                             |                         |                             | Non-spin                  | ning Reserves |         | adoption<br>market                   |
|                                                             |                         |                             | F                         | Replacement R | eserves | services                             |
| 4. Ramping<br>Reserves                                      |                         |                             | Ramping                   | Reserves      |         | Currently<br>procured<br>via markets |
| 5. Normal operation<br>provided by "energy<br>and capacity" |                         |                             | Econo                     | omic Dispatch |         | via markets                          |
|                                                             | mS :                    | s M                         | in                        | Hr            | Day     |                                      |

### Frequency-Responsive Reserve Requirements

#### **Primary Frequency Response Obligation**

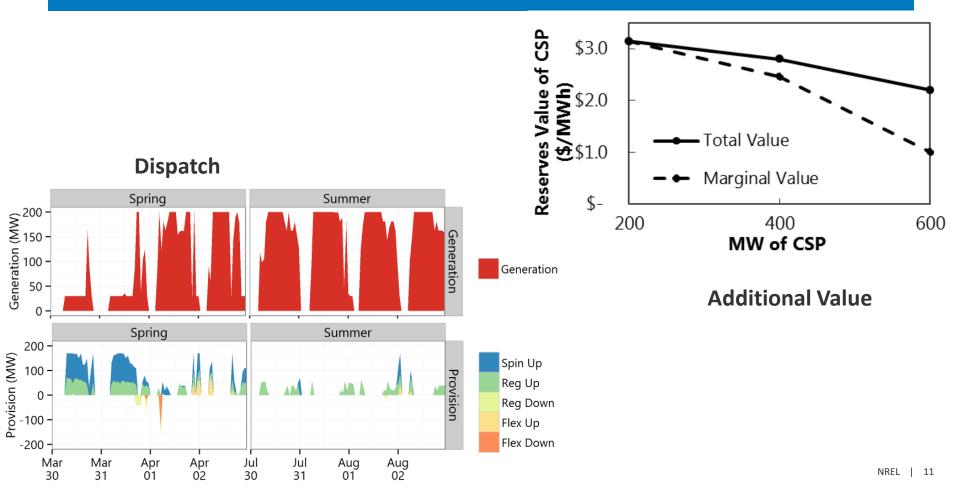
 NERC has established minimum recommended standards for PFR for each of the three U.S. grids

| Region    | IFRO<br>(MW/0.1Hz)ª | MDF (Hz) <sup>b</sup> | Requirement (MW / %<br>of Peak Demand) |
|-----------|---------------------|-----------------------|----------------------------------------|
| CAISO     | 196.5               | 0.28                  | 550 / 1.1%                             |
| Non-CAISO | 661.5               | 0.28                  | 1,852 / 1.7%                           |

- Currently an uncompensated service
- Potentially a new market opportunity
- Like regulating reserves, limited in size

### Regulating and Contingency Spinning Reserve Requirements and Costs

For the requirement in non-market regions, we multiply the percentage requirement of a large utility in that region by the total peak demand of the larger region in which it is located


| Market Regions                                               | Average Regulation Requirement<br>(% of Peak Demand / MW)               | 2017 Average Price (\$/MW-hr)                                  |  |
|--------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------|--|
| CAISO                                                        | Regulation Up: 0.64% / 320<br>Regulation Down: 0.72% / 360 <sup>a</sup> | Regulation Up: \$12.13<br>Regulation Down: \$7.69 <sup>b</sup> |  |
| Regulated Regions <sup>o</sup>                               | (% of Peak Demand / Estimated<br>Region Requirement in MW)              | Tariff (\$/kW-month / \$/MW-hr)                                |  |
| Non-CAISO WECC<br>(proxy utility: Arizona<br>Public Service) | 1.17% / 1,240 <sup>p</sup>                                              | \$7.41/\$10.29                                                 |  |

**Regulating Reserve Reguirements** 

#### **Spinning Contingency Reserve Requirements**

| Market Regions              | Spinning Requirement (% of<br>Peak Demand / MW) | 2017 Average Price (\$/MW-hr) |
|-----------------------------|-------------------------------------------------|-------------------------------|
| CAISO<br>Non-CAISO WECC     | 1.60% / 800 MW <sup>a</sup>                     | \$10.13 <sup>b</sup>          |
| (Arizona Public<br>Service) | 1.50% / 1590                                    | \$6.26 / \$8.69               |

### Example of CSP Dispatch with Reserves Provision



## Summary of Key Findings

- The majority of the value of CSP will be derived from capacity and energy services
  - Maximizing capacity value will be important
  - 6 Hours of storage appears sufficient
  - Direct storage will increase value by avoiding low-value generation in the spring
- Essential reliability services including operating reserves can provide an important supplement to value
  - But market is thin with increasing competition
  - Don't expect inertia and other benefits of using synchronous generators to be the "savior" of CSP

# Thank You

### www.nrel.gov

Funding provided by the DOE Office of Energy Efficiency and Renewable Energy Solar Energy Technologies Offices

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

