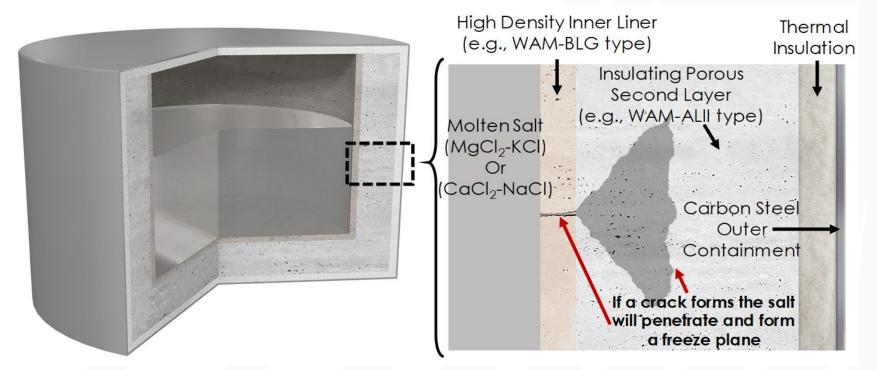


SETO CSP Program Summit 2019

Ceramic Castable Cement Tanks and Piping for Molten Salt


Asegun Henry, Department of Mechanical Engineering, MIT Ken Sandhage, School of Materials Engineering, Purdue University Ken McGowan and Bob Cullen, Westmoreland Advanced Materials

energy.gov/solar-office

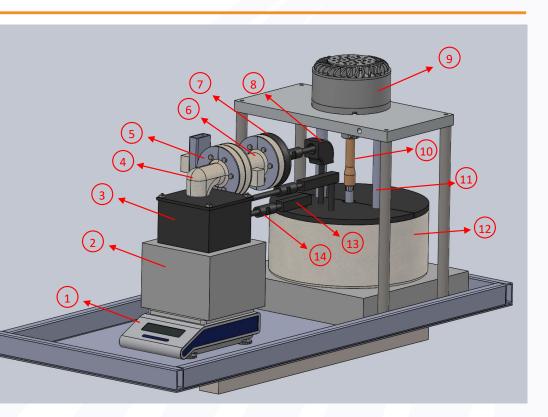
Overall Goals of the Project

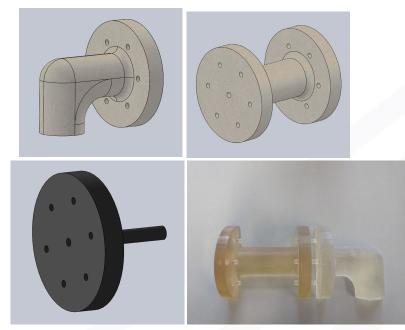
- Objective (1): Demonstrate through controlled tests with small samples that an optimized castable cement composition can sufficiently resist corrosion and penetration by MgCl₂-KCl at 750C. We also plan to show the material works under flowing condition, by demonstrating a lab scale tank that can hold 2 gallons of molten salt at > 750C, in a pumped closed loop configuration.
- **Objective (2):** Demonstrate that an optimized cement composition can be used for the piping infrastructure, demonstrating liquid tight seals between pipe sections under applied pressure.
- **Objective (3):** Develop techno-economic models for both the tank and piping to show that after all installation and manufacturing/processing related costs are accounted for, the two innovations proposed herein are much less expensive than the base case option of using Ni alloys for the entire infrastructure.

Castable Cement Tank

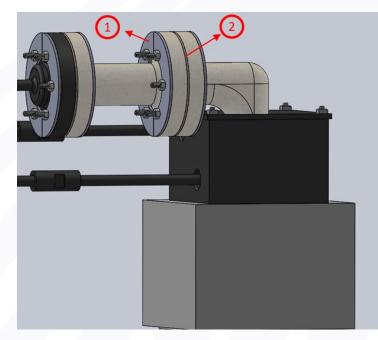
Proposed concept for castable cement tank and tertiary protection mechanism

Castable Cement Pipes


- Castable cement is an inexpensive route to a refractory and chemically compatible material for high temperature molten salts
- We are also proposing additional cost savings by employing castable cement to make piping as well as tank.
- The cements are generally composed of oxides, which have low thermal conductivities $\sim 1-5$ W m⁻¹ K⁻¹
- They are generally fabricated by adding water then pouring or forming a slurry into a mold, which is low cost, followed by a curing procedure at temperatures below 800C

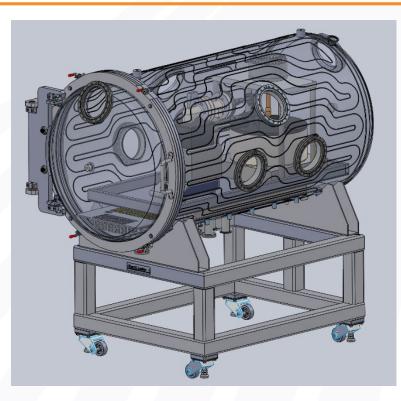

Proposed concept for castable cement piping with flanged connections and TZM bolts.

Overall circulation setup


No.	Part name	Material
1	Scale	-
2	Insulation	-
3	Flowmeter	Graphite
4	Flanged adaptor	Castable ceramic
5	Flange	Inconel
6	Flanged pipe	Castable ceramic
7	Flanged adaptor	Graphite
8	Elbow	Graphite
9	Motor	-
10	insulator shaft	Zirconia
11	Pump support rods	Carbon fiber/alumina
12	Tank	Castable ceramic
13	Nub	Graphite
14	Union connector	Graphite

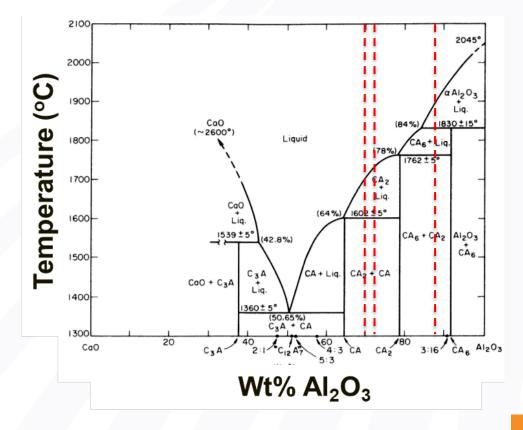
Castable flanged connections piping

Custom designed, 3D printed flanged pipes for making the casting mold


Ceramic flange connection with metal washers and bolts

Questions

?


Overall circulation setup

- The system is held inside a vacuum chamber
- The system provides the inert Ar environment.
- The Chamber's walls are water-cooled

Castable chemistries under examination

- Three different castable calcium aluminate-based materials are being investigated:
 - ALII which is CaO:Al2O3 molar ratio of 0.79:1
 - ALII-HD which is CaO:Al2O3 molar ratio of 0.25:1
 - ALII-HDF which is CaO:Al2O3 molar ratio of 0.73:1

