

Energy+Environmental Economics

Solar power and resource planning in California and beyond

Jimmy Nelson, Ph.D. Managing Consultant jimmy.nelson@ethree.com

March 18, 2019 CSP Program Summit

Energy and Environmental Economics, Inc. (E3)

 E3 completes about 200 projects a year across the energy sector, emphasizing electricity

This focus allows for constant innovation and development of best-in-class tools and analysis that leads to key insights, answers, and recommendations

DERs & Rates

Analyzes distributed energy resources, emphasizing their costs and benefits now and in the future

Supports rate design and distribution system

Asset Valuation

Determines asset values from multiple perspectives

Uses proprietary in-house models and in-depth knowledge of public policy, regulation and market institutions E3 has five defined working groups that create continual innovation from cutting edge projects and constant cross-fertilization of best practices across the groups

Planning & Procurement

Develops and deploys proprietary tools to aid resource planners

Informs longer-term system planning and forecasting

Clean Energy

Provides market and policy analysis on clean energy technologies and climate change issues

Includes comprehensive and long-term GHG analysis

Market Analysis

Models wholesale energy markets both in isolation and as part of broader, more regional markets

Key insights to inform system operators and market participants

Current California market conditions – Spring example

Current role of batteries

Batteries in the CAISO market are currently used for short-timescale balancing

- The storage market is expanding and fast-paced, with many different use cases and value streams
- Battery capacity has also been procured to address local reliability issues
- + But... most battery capacity is not yet being used to serve load at night with solar energy

California Public Utilities Commission Integrated Resource Planning (CPUC IRP) Process

Disclaimer: E3 is <u>not</u> speaking on behalf of the CPUC. All views are those of E3 alone.

Energy+Environmental Economics

IRP resource portfolios

- + E3's RESOLVE capacity expansion model was used to create resource portfolios for the CPUC IRP process (Blue and Red bars)
- + Load Serving Entities were required to design at least one portfolio consistent with the reference portfolios
 - LSE portfolios were combined to create aggregate portfolio (Yellow bars)

- Compared to the Reference System Plan (RSP) calibrated with the 2017 IEPR, LSEs plan to purchase:
 - 4-hour batteries generally in lieu of 1-hour batteries
 - About 1,400 MW less geothermal
 - About 900 MW more in-state wind
 - Similar amounts of OOS wind from specific regions like NM and WY

Note: The RSP updated to reflect the 2017 IEPR includes 1,500 MW more geothermal and 2,900 MW less solar PV than the adopted RSP based on the 2016 IEPR, which is provided for comparison purposes. The 2017 IEPR included more BTM PV than the 2016 IEPR, which decreased the value of Utility-Scale PV and increased the value of geothermal and wind in the RSP updated to reflect the 2017 IEPR. See the 3/29/2018 MAG webinar materials located at http://www.cpuc.ca.gov/General.aspx?id=6442451195 for further details.

Energy+Environmental Economics

2014 California utility study found that 50%+ RPS penetrations are feasible

- + 50% (and higher) renewable penetration is feasible, under one condition:
 - Renewables must be dispatchable based on the needs of the system
- + Renewable dispatch has little cost
 - Lost production tax credit and renewable energy certificate value

+ Curtailment increases at higher penetrations

• Up to 20% of hours by 2030

Energy+Environmental Economics

Source: E3, "Investigating a High RPS in California," https://ethree.com/documents/E3_Final_RPS_Report_ 2014_01_06_with_appendices.pdf

Solar PV follows grid operator commands

Energy+Environmental Economics

http://www.caiso.com/Documents/TestsShowRenewablePlantsCanBalanceLow-CarbonGrid.pdf

Investigating the Economic Value of Flexible Solar Power Plant Operation

October 2018

Energy+Environmental Economics

Increasing solar dispatch flexibility without storage

- In a report sponsored by First Solar, E3 studied Tampa Electric's system under high solar PV penetrations
- Study highlights role of system operator in reducing solar curtailment and increasing solar value by operating solar flexibly

100% and long-duration storage

Ambitious Targets:

 SB100 sets California on a path to 100% GHG free electricity sales by 2045, and Former Gov. Brown's Executive Order set an economywide GHG neutrality goal for the same year

 Nation-wide, 100% renewable energy has entered the political conversation
Energy+Environmental Economics

Role of Electricity:

+ Electrification of fossil fuel end uses is a key pillar of economy-wide decarbonization

Share of Electricity and Hydrogen (% of Total Energy)

80%

Role of Storage:

- Long-duration storage – with days, weeks, or months of duration – is needed to maintain electricity reliability
 - Chemical bonds of natural gas and coal dominate current longduration storage
- Reaching much higher levels (up to 100%) of GHG-free electricity with predominantly wind and solar power would require dramatic investment in new long-duration storage