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Goal Statement
• Goal: Develop a continuous electrochemical process to convert biorefinery waste lignin 

to substituted aromatic compounds for resins and resin binders

• Outcome: Generate additional biorefinery revenue streams and reduce the cost of 

biofuels to be competitive with petroleum fuels

• Relevance:

– Lignocellulosic biofuels are not cost-competitive

– Biorefinery lignin waste can be converted to aromatic compounds to generate 

additional revenue

– Catalytic depolymerization of lignin is difficult to control

– Electrochemical processes can control reaction energetics

– This project uses biorefinery waste as a feedstock to generate aromatic 

compounds and improve biorefinery economics

– Co-generation of high purity H2 generates additional revenue

– Industrial Relevance:  Phenolic resin market approaching $15 billion/year

• “Green” resins from renewable sources, stable raw materials cost

• Industry interest:  

– Dislodging petroleum as a resin precursor

– Environmentally friendly 2



Quad Chart Overview

Timeline
• 4/1/2016

• Project end date: April 30, 2020

• Percent complete: 40%
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Total 

Costs 

Pre 

FY17**

FY 17 
Costs

FY 18 
Costs

Total Planned 

Funding (FY 

19-Project 
End Date)

DOE 
Funded

11,579 242,244 357,103 861,798

Project 

Cost 

Share*

OU: 0

Hexion:0

LU: 0

38,489

1,437

0

56,630

24,667

6,060

122,711

86,156

31,439

•Partners: 
Ohio University:  60%

Hexion:  30%

Lakehead University:  10%

Barriers addressed
Ot-B.  Cost of Production.

Technical Targets
Fuel production cost at $3/GGE by 2022

Objective
Develop electrochemical processes to convert 
biorefinery lignin to useful chemicals.

End of Project Goal
Demonstrate 46% conversion of lignin with a path 
to achieving a 25% reduction in lignocellulosic 
biofuel cost with the electrochemical conversion 
process.



1 - Project Overview
• Waste lignin is currently burned by biorefineries as a low-grade fuel

• Lignin’s polyaromatic structure makes it an interesting, but underutilized, 

raw material

• Controlled depolymerization of lignin to useful products has not been 

demonstrated at high yield by typical catalytic processes

• Electrochemical processes have the advantage that reaction energetics can 

be precisely controlled by controlling electrode potential

• We are developing continuous electrochemical reactors to convert lignin to 

useful chemicals with co-generation of H2

• This approach is innovative because we can achieve significant 

depolymerization of lignin using inexpensive electrocatalysts (Ni-Co)

• Our project is also innovative because we apply statistical analysis to build 

high confidence in our results

• Industrial partnership will demonstrate feasibility of a real-world, commercial 

end-use application for our product streams

• This project addresses the high cost of biofuel production by creating 

additional biorefinery revenue streams from a high-volume waste
4



2 – Approach (Management)

• Management Approach:

– Team communicates and shares results

– Analysis is integrated across labs (CEER, Center for Intelligent 

Chemical Instrumentation, Hexion) to more fully characterize 

products

– BRI’s expertise in biorefinery economics applied to TEA

– Hexion’s expertise in resin synthesis applied to end-use 

application 5

Electrochemical 

conversion

Product analysis

Product analysis

Resin binder 

formulations
Biorefinery TEA
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2 – Approach (Technical)

• Develop novel Ni-Co electrocatalysts supported on TiO2

– Low-cost, stable under anodic conditions

• Incorporate electrocatalysts onto gas diffusion layer (GDL) support 

in a continuous flow reactor

– Standard electrochemical experiments with which Staser has 

extensive experience

• Conduct comprehensive analysis on product streams to broadly 

characterize the chemicals generated

• Apply statistical analysis to provide confidence in analytical results

• Potential Challenges

– Insufficient depolymerization or extent of lignin conversion

– Inability to adequately characterize product stream

– Inability to develop a cost-effective process
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2 – Approach (Technical)
• Critical Success Factors

– High rates of lignin depolymerization

– High yield of aromatic compounds

– Efficient H2 production

• Go/No-Go decision point:  Generate bio-based phenols at 1.6 V cell voltage, 0.6 V vs. 

SHE anode potential

• Technical and Economic Metrics (Intermediate Stage)

– At least 40% conversion of lignin

• Chosen based on electrocatalyst improvement and scale-up assumptions from Initial 

validation

• High conversion is necessary to break down lignin sufficiently for use in resin formulations

– At least 67% selectivity toward useful products

• Chosen based on early product analysis

• High selectivity toward aromatic units is significant for resin development

– At least 26% yield of useful products

• Chosen based on early product analysis

• More pure product streams facilitate resin synthesis

– 80% faradaic efficiency for H2 production

• Chosen based on typical electrolysis operation

• Efficient H2 production enhances process economics

– These metrics would predict an intermediate stage net biofuel production cost of 

$2.67/gge using calculations agreed upon during initial validation
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3 – Technical Accomplishments/ 
Progress/Results

• Intermediate Milestones Achieved:

– Developed NiCo/TiO2 electrocatalyst

– 10 cm2 reactor, 8 mg/cm2 catalyst loading, <1 L/hour flow rate, 
1.6 V, 120 hours continuous operation

– H2 production rate >2 sccm, >98% faradaic efficiency

– Lignin conversion target (>40% conversion achieved)

– Yield and selectivity targets (>60% selectivity achieved)

• Key Milestones and Status

– Electrocatalyst development and down-select: complete

– Demonstration of lignin oxidation with cogeneration of H2 at <1.6 
V in 10 cm2 test cell: complete

– Development of 200 cm2 reactor: ongoing

– Formulation of phenol-formaldehyde resins based on bio-
aromatics: ongoing

– Techno-economic analysis: ongoing
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3 – Technical Accomplishments/ 
Progress/Results

• How do we get here? Analyze, Analyze, Analyze

• Analysis of lignin is not trivial

• Statistical analysis is key to building confidence in our results

• This is a novel approach to identification of lignin conversion 
products

• Primary Analysis Techniques:

– UV-vis spectroscopy with standard addition method

– FTIR

– Gel permeation chromatography (GPC)

– GC-MS

– HR-MS

• Provides Information On:

– Extent of lignin conversion

– Product stream composition

– Co-product H2 purity
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3 – Technical Accomplishments/ 
Progress/Results

• UV-vis generalized standard 
addition method

• Add known concentrations of 
unreacted lignin to product 
solution (unreacted lignin + 
oxidation products)

• Analyze peak intensity at 330 nm

• Linearity in peak intensity with neat 
lignin concentration used to reference 
amount of unreacted lignin

• How much unreacted lignin do we 
have to remove so peak at 330 nm 
reduces to zero intensity (no 
unreacted lignin condition)
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3 – Technical Accomplishments/ 
Progress/Results

• Generalized Standard Addition Method on UV-vis results

Clear trends with good sensitivity

Electrolysis 
time (min) 

ppm of neat 
lignin Classical 

GSAM 

ppm of neat 
lignin 

Inverse GSAM 

Conversion % 
based on 

Classical 

GSAM 

Conversion 
% based on 

Inverse 

GSAM 

1.28 24.69 24.53 31.62 32.07 

2.88 21.98 21.91 39.13 39.32 

4 19.31 19.24 46.52 46.72 

 

High extents of reaction

• Could indicate efficient process

• Significant product generation

Biorefinery revenue – cost 

reduction
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3 – Technical Accomplishments/ 
Progress/Results

• Correlation between oxidized 
and neat lignin samples

• Preliminary results indicate 
potential increase in aromatic 
products

• Key statistical analysis 
techniques are ongoing to 
build greater confidence in 
initial results
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3 – Technical Accomplishments/ 
Progress/Results

• Normalized IR spectra show 
significant functional group 
changes

• Significant conversion of C–OH 
groups to C=O groups

• C=O more reactive than C-OH

• Positive impact on resin synthesis 
procedures

• More reactive groups  easier 
resin synthesis  cost impact
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3 – Technical Accomplishments/ 
Progress/Results

• Depolymerization analyzed by GPC

• Significant reduction in MW

• Complements UV-vis results

• Trend approaches 2000 MW useful by industrial partner for 
resin synthesis

• Further confirmation of extent of lignin depolymerization

• High rates of lignin depolymerization  high rates of 
product stream generation  additional revenue 
reduced biofuel cost
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3 – Technical Accomplishments/ 
Progress/Results

• Hydrogen Production

• H2 purity = 97% by GC analysis

• Other 3% is a N2 + O2 (air) mixture likely due to collection and 
transfer from the reactor to the GC

• H2 is an additional product

• Efficient H2 production  high-rate co-product generation 
additional biorefinery revenue  lower biofuel production cost

Current (mA) Theoretical volume of 

H2 (ml/min) 

Actual volume of H2 

(ml/min) 

Faraday efficiency 

300 2.23 2.32 1.04 

250 1.86 1.84 0.98 

200 1.49 1.5 1.01 

150 1.12 1.17 1.05 

100 0.74 0.64 0.86 

50 0.37 0.38 1.02 

Ave= 0.99 
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3 – Technical Accomplishments/ 

Progress/Results (cont’d)
• We have successfully validated a continuous reactor vs. benchmark 

batch reactor

• Continuous process leads to significantly higher reaction rates and 

extents of conversion (>40% lignin conversion vs. <1% in 

benchmark batch process)

• High efficiency (>98% faradaic efficiency) hydrogen production

• Technical Target Benchmark:

– 40% lignin conversion (achieved up 46% lignin conversion)

– 26% product purity (achieved 23%)

– 67% selectivity (achieved 68% selectivity)

– 0.02 sccm H2 production (achieved >2 sccm)

– No more than 30 g solubilized lignin remaining after reaction (achieved 

27 g lignin remaining after reaction)

• No variations/important changes from 2017 Project Review
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4 – Relevance
Make Biofuels Cost-competitive by Developing Additional Biorefinery Revenue 

Streams

• Directly supports BETO’s mission: “Develop and demonstrate transformative 

and revolutionary bioenergy technologies for a sustainable nation.”

• Addresses Market Transformation:  “By 2022, validate successful runs of two 

biofuels and/or bioproducts manufacturing processes at pilot scale.”

• Addresses a key component of BETO’s portfolio:  R&D on biomass 

conversion technologies.

This project develops transformative electrochemical techniques resulting in high 

rates of lignin conversion and high yields of useful chemicals

e-
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4 – Relevance
Relevance to Industry:  Provide non-petroleum precursors for phenolic resins; 

addresses greenhouse gas emissions and petroleum price fluctuations

• Industrial partnership is a key driver for this project

• Global phenolic resin market expected to grow to $15 billion by 2021
• Industrial partner Hexion has begun formulating resins

• Could open a new “green” resin market

• Reduces reliance on petroleum

• New high-value uses for renewable biomass

• Technology Transfer Potential

• Market commercial-scale electrochemical reactors to:

– Biorefinery companies for on-site conversion of waste lignin to 

phenolic resin precursors

– Resin, binder and plastics manufacturers for conversion of waste 

biomass to raw materials at production facilities

Co-generation of high-purity H2 can address additional energy needs, including 

for fuel cells, etc.
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5 – Future Work
• Scale up the process to a 200 cm2 reactor

– Reduce electrocatalyst loading

– Increase extent of conversion of lignin and yield of useful 

products

– Optimization of the process (cell voltage, residence time) will be 

a primary focus going forward

– Optimization starts with factorial design of experiments on 200 

cm2 reactor

– Continue statistical analysis on product streams

• Key Milestones/Deliverables

• Incorporate product stream into resin binder formulations

• Generate process flow diagrams integrating an electrochemical 

process into the biorefinery concept

• Complete the techno-economic analysis based on further design 

scale-up using 200 cm2 reactor data
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Summary
1. Overview:  This project focuses on electrochemical conversion of 

biorefinery lignin to industrial chemicals

2. Approach:  We have developed a continuous electrochemical 

process with robust statistical analysis to verify results

3. Technical Accomplishments/Progress/Results :  We have hit 

Intermediate milestones on:
» Reactor scale, flow rate, catalyst loading, operating time

» Extent of lignin conversion

» Reaction rate

» Hydrogen production rate

4. Relevance:  Supports BETO’s mission to develop sustainable 

bioenergy technologies by directly addressing the cost of 

lignocellulosic biofuel production (create additional biorefinery 

revenue)

5. Future work:  Reactor scale-up and increased extent of lignin 

conversion, completion of techno-economic analyses 

demonstrating path toward reduced biofuel cost
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Additional Slides
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Responses to Previous Reviewers’ 

Comments
…There are a few other variables (lignin source, catalyst 

preparation/carrier, power usage/control) for which it would be good to 

present an understanding of the degree of variability they will give.
– We detect variability in lignin, but it is small and the primary inter-unit linkages (β-O-4) 

dominate

– Catalyst preparation techniques result in consistent catalyst properties; these are 

standard and well-understood synthesis procedures

– Power usage/control depends on the applied cell voltage.  We operate at <=1.6 V to 

minimize energy requirements (also avoids unwanted generation of O2)

The TEA is not as developed as one may want, and I particularly 

missed an understanding of what the overall market potential is for the 

proposed enhanced lignin
– Global phenolic resin market expected to grow to $15 billion by 2021

– Over 100 million lbs produced in the US every year

– If phenolic compounds from lignin can compete in price and quality with those derived 

from petroleum, market is potentially large

– TEA analysis to be updated and expanded as experimental results are generated
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Publications, Patents, Presentations, 

Awards, and Commercialization
Previously Reported:

• With help from DOE BETO, the Russ College of Engineering and Technology published a story 

about his project on October 31, 2016:  

https://www.ohio.edu/engineering/news/news-story.cfm?newsItem=0C1574BE-5056-A874-

1DA7051EF8FCAF27

• Ohio University student newspaper (The Post), November 17, 2016:

https://www.thepostathens.com/article/2016/11/russ-college-biofuel-grant

Since 2017 Merit Review:

• Biofuels Digest, June 25, 2017:

http://www.biofuelsdigest.com/bdigest/2017/06/25/things-to-do-with-lignin-the-digests-2017-multi-slide-

guide-to-upgrading-biorefinery-waste-to-chemicals-and-hydrogen/

• Mahtab NaderiNasrabadi and John A. Staser, “Continuous Electrochemical Reactor for the 

Conversion of Biorefinery Lignin to Aromatic Compounds,” 232nd ECS Meeting, October 2017.

• Mahtab NaderiNasrabadi and John A. Staser, “Depolymerization of Waste Lignin to Valuable Low 

Molecular Weight Aromatic Compounds via a Continuous Electrochemical Reactor,” 2018 AIChE

Annual Meeting, October 2018.

https://www.ohio.edu/engineering/news/news-story.cfm?newsItem=0C1574BE-5056-A874-1DA7051EF8FCAF27
https://www.thepostathens.com/article/2016/11/russ-college-biofuel-grant
http://www.biofuelsdigest.com/bdigest/2017/06/25/things-to-do-with-lignin-the-digests-2017-multi-slide-guide-to-upgrading-biorefinery-waste-to-chemicals-and-hydrogen/

