Sandia

Exceptional service in the national interest @ National
Laboratories

, Twitter: @SandiaEnergy Website: energy.sandia.gov

Biological Lignin Valorization - SNL

Technology Session Review Area: Lignin

Presenter: Alberto Rodriguez
PI: Ken Sale




Goal Statement

Goal: Develop fundamental understanding of biological (enzymatic) depolymerization
of lignin

* Identity intermediates produced during enzymatic depolymerization of lignin

* Identify which of these intermediates can be consumed by microbes and microbial

consortia

* Focus on deriving intermediates amenable to biological upgrading

Lignin polymer |:> Lignin fragments :> Lignin metabolism
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Outcome: Biological approach to depolymerize lignin into intermediates, a critical step
to biological upgrading to valuable products




Quad chart overview

Timeline

e Start date: October 2017
* End date: September 2020

DOE

funded $177k $327k

Partners and collaborators:

Total
Planned
Funding

(FY19-
End
Date)

$250k

Davinia Salvachtia and Gregg Beckham at
National Renewable Energy Laboratory

Barriers addressed

Ct-C Process development for conversion of lignin,
converting lignin into value-added products

Development of enzyme systems for tailored
depolymerization of lignin

Depolymerizing lignin into valuable intermediates
amenable to upgrading to valuable products

Objective

Fundamental understanding of biological
depolymerization of lignin into defined and
upgradable intermediates

End of Project Goal

Achieve >50 % enzymatic or microbial conversion
of a -O-4 and C-C bond containing synthetic lignin
oligomer to compounds that can be biologically
assimilated



Project overview

History: Project started in FY18, following a previously funded BETO project with NREL
to develop a biological approach to depolymerize oligomeric lignin for subsequent biological
conversion to value-added co-products

Context: Biorefineries do not currently utilize lignhin to make value-added products
* Lignin is a complex heterogenous polymer, difficult to convert and analyze

* Biological conversion of lignin requires depolymerizing it to fragments amenable to being
upgraded using engineered microbes

* Lack of knowledge on what compounds obtained from lignin streams can be consumed by
microorganisms

Project Goals:

* Fundamental understanding of microbial and enzymatic lignin modification, bond cleavage
and fragment utilization

* Mixtures of microbes and/or enzymes to achieve >50 % conversion of a 3-O-4-and C-C
bond containing dimers and oligomers



Project management

* Tasks led by subject specific experts
*  Quarterly videoconferences with BETO
* Interact with NREL to help inform host engineering

Task 1: Assay development and substrate synthesis
* Led by organic synthetic chemist Kai Deng

* Synthesis of model lignin compounds

Task 2: Microbial growth on lignin model compounds
* Led by microbiologist Alberto Rodriguez

* Identitying microbes that utilize lignin as a carbon source

Task 3: Lignin analytics and enzyme assays
* Led by biophysicist Mike Kent
* Enzymology studies




Project interactions

Lignin polymer |:> Lignin fragments :> Lignin metabolism
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Technical approach
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Lignin metabolism
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Challenges

* Assaying bond cleavage is difficult: most assays
are limited to measuring oxidation events

* Most microorganisms are expected to assimilate
only some monomeric or dimeric compounds

¢ Difficult to identity when a specific substrate is
converted into compounds that can be fully
metabolized

Approaches

* Synthesize B-O-4 bond and C-C bond containing
compounds that fluoresce upon bond cleavage

* Decouple substrate conversion from microbial
growth by using a resting cell system

* Screen for combinations of enzymes and organisms
that can degrade and grow on accumulated
intermediates



B-aryl ether dimer substrates for fluorescence-based assays
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B-aryl ether dimer substrates for fluorescence-based assays
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Synthesized mg quantities of phenolic and non-phenolic 3-O-4 linked dimers and
confirmed fluorescence readout of released MUB compound upon bond cleavage




B-aryl ether dimer substrates for fluorescence-based assays
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Microbial assays with fluorescent substrates

RFU values obtained after incubation of microorganisms with fluorescent dimers
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Obtained evidence of the presence of enzymes that can catalyze cleavage of some
fluorescent phenolic and non-phenolic compounds
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Detection of commercial lignin-related compounds
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Optimized the experimental conditions to monitor the biological and enzymatic
conversion of 5 model lignin-related compounds
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Microbial dimer degradation

HPLC peak areas obtained after incubation of microorganisms with dimers
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Observed organism-dependent variations in dimer degradation products
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Characterization of metabolic breakdown products

Novosphingobium aromaticivorans + GGE
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Generated kinetic information on degradation of GGE and PR to prepare
solutions enriched on relevant metabolic intermediates for further screening
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Future work

Task 1: Assay development and substrate synthesis

* Synthesize a C-C bonded fluorescent model
substrate

Synthetic lignin polymer with defined
structure with two beta-esters and one

C-C (GreenLignol) Task 2: Microbial growth on lignin model
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Relevance

Project goal: fundamental understanding of how microbes enzymatically modify lignin and utilize
lignin fragments, identification of relevant mixtures of microbes and their associated enzymes

Why is this project important, what is the relevance to
BETO and bioenergy goals?

Biological Valorization
of Lignin to Chemicals

* Lignin valorization is critical to the achieving $3/gge

goal.

* This project addresses two key questions for lignin
valorization via biological routes:

— What fragments can be produced from biological
depolymerization of lignin?

Polymerization

Beckham et al. Curr Opin Biotech

— Of these breakdown products, which are utilized as 2016

a carbon source by microorganisms and are thus
targets for upgrading via synthetic biology?

How does this project advance the SOT, contribute to biofuels commercialization?
* Advances our understanding of how biological systems break down and metabolize lignin

* Tilling the gap in knowledge that limits synthetic biology efforts to valorizing lignin
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Summary

Approach

* Bottom up approach utilizing model compounds to how enzymes and microbes modify lignin
and utilize lignin fragments

* Investigate the synergistic effect of microbes, enzymes and substrates, to identify conditions
that enable microbial growth

Technical accomplishments

* Established a screening protocol for monitoring compound degradation and analyzing
metabolic intermediates

* Observed organism-dependent variations in dimer degradation products which identifies
promising combinations of organisms for future studies

Relevance

* This work will provide key information for host engineering regarding substrate utilization
from depolymerized lignin streams

Future work

* Investigate breakdown of oligomers by combinations of microbes and enzymes and subsequent
utilization of the generated fragments

* Employ combinations of enzymes to generate defined lignin intermediates from oligomers
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