

DOE Bioenergy Technologies Office (BETO) 2019 Project Peer Review 2.5.6.105 Bioderived Materials for Large-Scale Additive Manufacturing

March 4-8, 2019

Erin Webb, Soydan Ozcan, Andy Zhao, Halil Tekinalp

Oak Ridge National Laboratory

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Goal Statement

Improve economic viability of biomass supply chains with integration of materials coproducts

Research questions:

- Is biomass a suitable replacement for carbon fiber in bioderived composites for large-scale 3D printing?
- 2. Can we design integrated biomass supply chains for fuels and materials to reduce biofuel feedstock costs?

Quad Chart

Timeline

- 10/1/2017
- 9/30/2020
- 45%

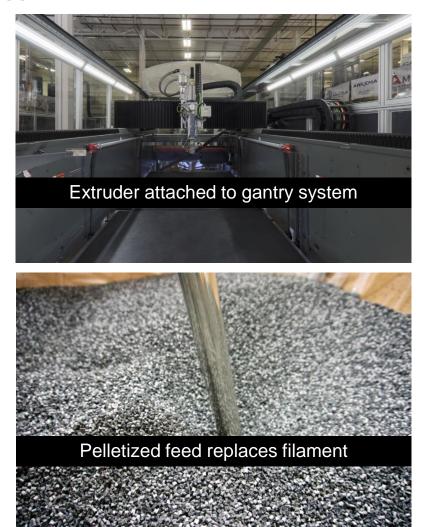
	Total Costs Pre FY17**	FY 17 Costs	FY 18 Costs	Total Planned Funding (FY 19-Project End Date)
DOE Funded			\$346K	\$692K
Project Cost Share*				

Barriers addressed

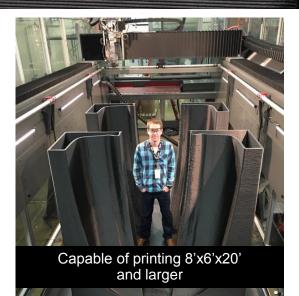
- Ct-J. Identification and Evaluation of **Potential Bioproducts**
- Ot-B. Cost of Production
- ADO-A. Process Integration

Objective

To improve the economic viability of the biofuels industry by adding a new high-value revenue stream for biomass supply chains bioderived composites for the rapidly expanding large-scale additive manufacturing industry


End of Project Goal

To resolve technical challenges of scale up in biomass preprocessing and biocomposites compounding operations to supply >500 lb of a bioderived material with biofiber reinforcement for a joint BETO/AMO large-scale printing demonstration


Project Overview Large-scale polymer additive manufacturing

Bigger, faster, cheaper, smarter

ABS Plastic reinforced with carbon fiber for dimensional stability

Project Overview Advantages of Biomaterials

Enhancing the Clean Energy Economy

- ✓ 100% renewable product
- ✓ Rural economic development
- Lower cost and environmental impact than petroleum-derived products
- ✓ Increased pathways for recycling
- Sustainable manufacturing practices
- Improves economics of biofuel production

Project Overview Prior experience with bioderived materials for 3D printing

Design Miami, December 2016 Pavilion designed by Shop Architects of NYC 20% bamboo, 80% PLA

Can we produce biocomposites from domestic feedstocks in a way that complements the biofuel industry?

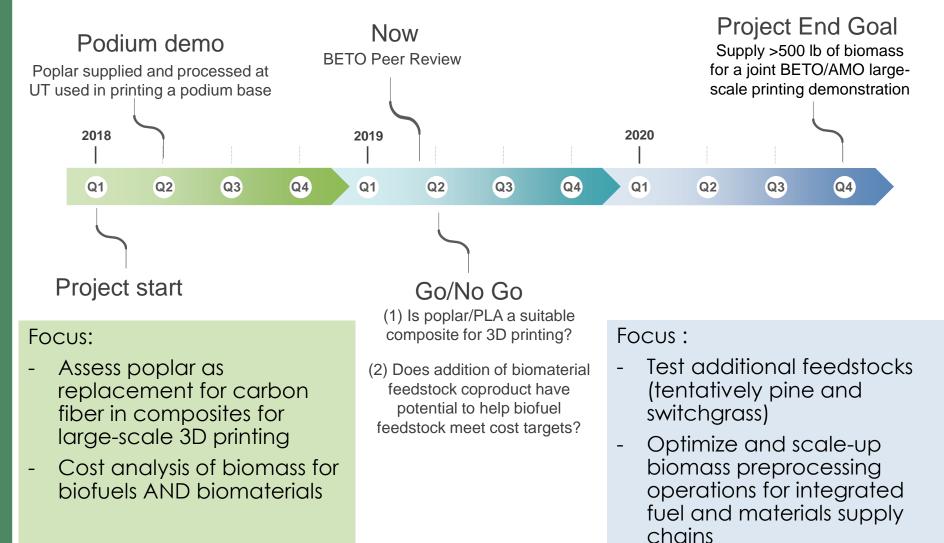
Management Approach

• Team

)ak Ridge

National Laboratory

- PI: Erin Webb
- Materials science: Soydan
 Ozcan, Andy Zhao, Halil
 Tekinalp
- Biomass supply and processing: University of Tennessee Center for Renewable Carbon
- Printing: ORNL Manufacturing Demonstration Facility (MDF) with financial support from the DOE Advanced Manufacturing Office (AMO)


- Project management
 - Biweekly or monthly ORNL meetings
 - Quarterly meetings with UT CRC and MDF

MDF at ORNL

 Quarterly updates to BETO technology manager

Management Approach **Timeline**

8

Technical Approach **Preliminary demonstration**

Test print in February, 2018 Podium base with PLA + 20% poplar

Technical Approach

Research questions:

- 1. Is biomass a suitable replacement for carbon fiber in bioderived composites for large-scale 3D printing?
- 2. Can we design integrated biomass supply chains for fuels and materials to reduce biofuel feedstock costs?

Biomass Characterization

- 1. Composition
- 2. Particle size
- 3. Particle aspect ratio
- 4. Surface morphology

Material Testing

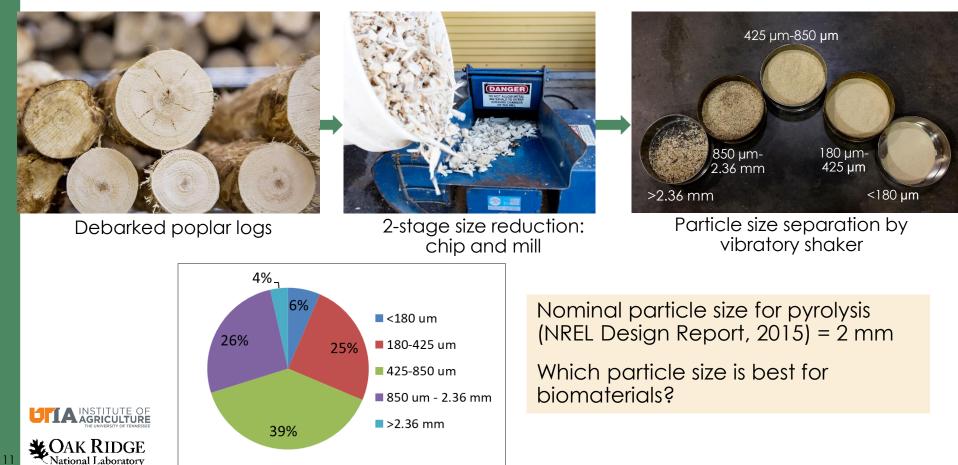
- 1. Material strength
- 2. Printability (rheology)
- 3. Dimensional stability of printed product

Cost Analysis

- 1. Biocomposite cost
- 2. Impact on biofuel feedstock cost

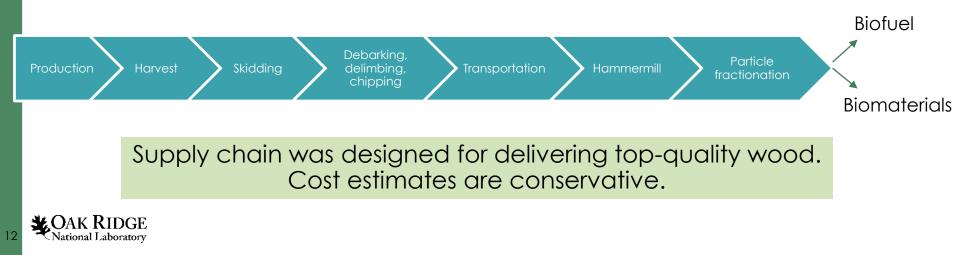
Technical Targets

Go/No Go, Due March 31, 2019


- 1. Material strength 75% of CF/ABS
- 2. Material cost 50% of CF/ABS
- 3. Reduce poplar feedstock for fuel to <\$73/dry ton?

Technical Approach **Biomass Preprocessing**

- Mechanical processing, size reduction and particle fractionation, to create feedstocks for fuels and materials
- What particle size fractions are best for materials? For biofuel conversion?

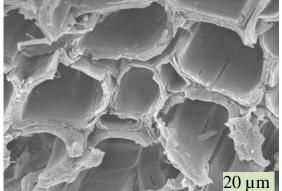


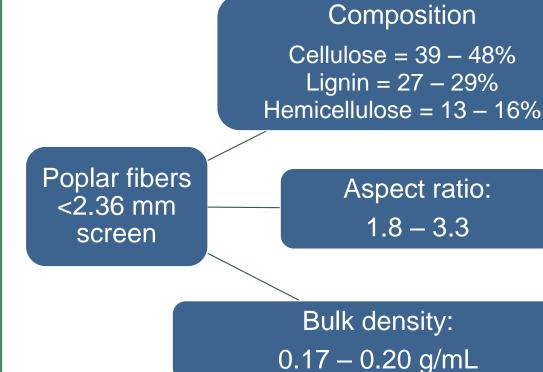
Technical Approach **Cost Analysis**

- Poplar for biomaterials price target
 - Current value of CF/ABS ~ \$6/lb
 - At 50% of CF/ABS, biocomposite price target = \$3/lb
 - At 20% fiber fill
 - Compounding process ~ \$0.65/lb
 - PLA ~ \$0.80/lb
 - Leaves \$1.55/lb (of composite) for fiber

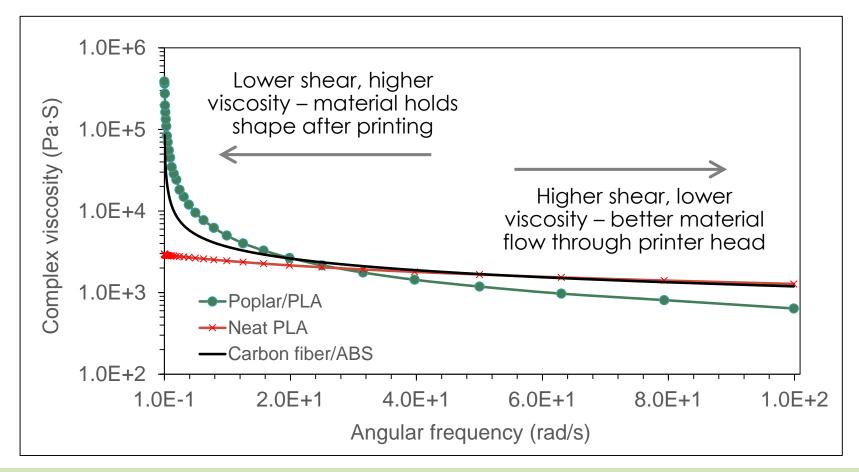
Poplar delivered cost

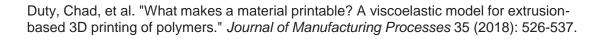
Operation	\$/dry ton
Production & maintenance	100
Harvest	25
Skidding & chipping	25
Delimbing and debarking	10
Transportation	27
Hammermill	20
Particle size fractionation	10
TOTAL	217




Technical Accomplishments/Progress/Results Characterization of poplar fibers

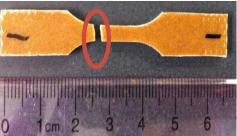
Outer surface

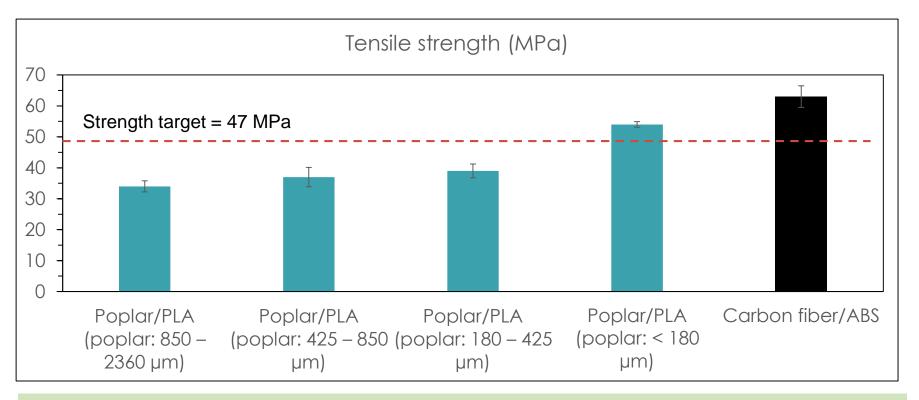

Cross-section surface



B CAK RIDGE

Technical Accomplishments/Progress/Results **Printability of poplar based composites**


- All composites here meet the viscous characteristics of 3D printing according to a printability model created by Duty et al.
- PLA/poplar printability outperforms CF/ABS and neat PLA (no fiber reinforcement)



Technical Accomplishments/Progress/Results Composite strength

- Compared composites with 20% by weight fiber reinforcement (poplar/PLA vs carbon fiber/ABS)
- Strength target (FY19 Go/No Go) is 75% of CF/ABS

With particle size <180 μm , composite of 20% poplar and 80% PLA had tensile strength 89% of carbon fiber/ABS

CAK RIDGE

Technical Accomplishments/Progress/Results **Cost Analysis**

- Biomass cost to meet biomaterial cost target = \$690/dry ton
- Delivered cost of high-quality $poplar = \frac{217}{dry} ton$
- Recent market price of pine wood flour \approx \$500/lb

Fraction to biomaterials	Fraction to biofuels	Minimum biomaterial feedstock price if biofuel feedstock is \$73/dry ton (BETO cost target)
30%	70%	\$552/dry ton
50%	50%	\$360/dry ton
70%	30%	\$278/dry ton

For example: If we divide biomass 50/50, and the biofuel feedstock is valued at \$73/dry ton, fiber for biomaterial should earn at least \$360/dry ton.

"Biofiber reinforcement is attractive to manufacturing industry because as fiber loading increases, product strength increases and cost decreases"

- Lonnie Love, ORNL Corporate Fellow and Manufacturing Systems **Group Leader**

Relevance

- There are opportunities to develop lowcost, sustainable materials for largescale 3D printing for applications that do not require the full strength of carbon fiber/ABS
- Successful completion of this project will provide a new, high-value feedstock coproduct stream that reduces biofuel costs by sharing feedstock supply chain resources and costs with biofuel feedstocks
- Biomass for bio-derived materials can either compete with or complement biofuel feedstock supply chains

Future Work

- Test other feedstocks (e.g., pine and switchgrass)
- **Compare** performance of biofiber reinforcement with carbon fiber reinforcement in printed products.
- **Optimize and scale up** feedstock size reduction and fractionation operations.
- **Optimize** biocomposite strength with biomass treatments, increased fiber loading, and improved fiber:resin bonding.
- Match biocomposites with **best applications**.

Molds for a car hood printed from CF/ABS and biocomposites. Molds are a target application for large-scale additive manufacturing.

Summary

- **GOAL:** Improve the economic viability of biomass supply chains with integration of materials coproducts
- SUCCESSFULLY ACHIEVED TECHNICAL TARGETS to: (1) create biocomposites for large-scale additive manufacturing with 75% of strength at 50% cost of CF/ABS and (2) Reduce biofuel feedstock cost
- NEXT STEPS: optimize printed product performance, test other feedstocks, optimize and scale-up biomass preprocessing

CAK RIDGE

Additional Slides

Publications and Presentations

Publications

Kooduvalli, K., B. Sharma, E. Webb, U. Vaidya, and S. Ozcan. 2019. Sustainability Indicators for Biobased Product Manufacturing: A Systematic Review. *Journal of Sustainable Development* (accepted)

Presentations

Xianhui Zhao, Erin Webb, Soydan Ozcan, Halil Tekinalp, Tim Theiss, Darby Ker. Bioderived Materials for Large-Scale Additive Manufacturing. ASABE Annual International Meeting, Detroit, MI July 29 – August 1, 2018.

