

### DOE Bioenergy Technologies Office BETO 2019 Project Peer Review

#### Feedstock-Conversion Interface Consortium (FCIC) WBS 1.2.2.50x: Feedstock Physical Performance Modeling

March 4-8, 2019 Technology Session Area Review

Principal Investigator: Tyler Westover



This presentation does not contain any proprietary, confidential, or otherwise restricted information

# **Goal Statement**



#### 1-Year Project Goal (shared with Variability Project, 1.2.2.40x):

- Develop accurate & complete methods to measure physical & mechanical properties of bulk corn stover and loblolly pine materials for physics-based computational simulations
  - <u>Specific application</u>: Achieve agreement R<sup>2</sup>>0.8 between model predictions and lab measurements for a custom lab-scale flow test apparatus

#### **Outcomes:**

- Physics based models provide:
  - Relationships between specifications and flowability
  - Identification of properties needed for QA/QC (variability)
  - Means to scale lab/pilot feeding data to industry operations (equipment performance data)
- Above items lead to increased equipment uptime



https://energy.gov/eere/bioenergy/downloads/ biorefinery-optimization-workshop-summary-report

# 1 – Project Overview





1<sup>st</sup> Year focus: Fundamental material behavior, not specific equipment or operation

# 1 - Project Overview (Cont.)



### Goal of the Consortia

 Identify and address the impacts of feedstock variability – chemical, physical, and mechanical – on biomass preprocessing and conversion equipment and system performance, to move towards 90% operational reliability.



# **Quad Chart Overview**



5

#### Timeline

- Start date: 10/01/2017
- End date: 09/30/2018
- Percent complete: 100%

|                     | Total<br>Costs<br>Pre<br>FY18** | FY 18<br>Costs<br>(total) |
|---------------------|---------------------------------|---------------------------|
| Total DOE<br>funded | \$0                             | \$1,500,000               |
| INL                 | \$0                             | 53%                       |
| NREL                | \$0                             | 37%                       |
| ANL                 | \$0                             | 10%                       |

#### **Partners:** • Purdue University

- Clemson University
- E&G Associates
- Material Flow Solutions, Inc.

#### Barriers addressed (Multi-year Program Plan)

- Ft-H: Biomass Material Handling & Transport
- Ct-A: Feedstock Variability
- Ct-B: Reactor Feed Introduction

#### Objective

Use mechanistic modeling to identify the causes of feed-handling failures and validate predictions to lead to improved process designs to enhance the reliability of industrial integrated biorefineries (IBRs).

#### **End of Project Goal**

Year 1: Achieve agreement (R<sup>2</sup>>0.8) between model predictions and lab measurements for a custom lab-scale flow test apparatus.

Year 3 (originally planned): Robust computational simulations and characterization methods to enable 50% improvement in biorefinery operating reliability relative to base case for hopper/feed auger systems and compression screw augers at scales of 1 to 50 tonne/hr.



# 1 – Project Overview (Cont.)



- Understanding the feeding and handling (F&H) behavior of materials is a critical enabling factor for many industries, such as petroleum, food, pharmaceutical, and manufacturing.
- Conventional design of F&H equipment is based upon technology developed for fine powders 40 years ago (not adequate for biomass).

#### Substantial progress in this area requires:

- 1. Particle (discrete element method or DEM) models that rigorously capture flow physics.
- 2. Continuum (structural mechanics) models that can scale to industry operations.
- 3. Close coupling between model development and instrumented pilot-scale flow tests.

# INL, NREL, and ANL have the necessary modeling and pilot-scale test capabilities





# 2 – Approach (Management)



7

#### Task Management

- Bi-weekly calls with other projects in the FCIC
- Semi-annual face-to-face meeting with other FCIC projects
- Periodic inter-laboratory team meetings & visits
- Quarterly progress reports

#### Leverage related BETO-sponsored work

- Shared milestones, data and leadership with Feedstock Variability project (1.2.2.40x)
- Close collaboration with competitive Integrated Biorefinery Optimization Modeling projects at NREL, Purdue, Clemson and Forest Concepts
  - Sponsored interns from Purdue and Clemson
- Also collaborates with the Consortium for Computational Physics and Chemistry (CCPC; www.ccpcbiomass.org)
- Create & follow approved project management plans

#### Collaborate with leading bulk material handling consultants

- E&G Associates, Inc.
- Material Flow Solutions, Inc.

2 – Approach (Technical)



8

#### **Tasks & Connections**

80% of funds

|          | Task Name                                              | Inputs                          | Outputs                                                 |
|----------|--------------------------------------------------------|---------------------------------|---------------------------------------------------------|
|          | Task 1: Baseline industry practices                    | Literature                      | Effectiveness of current methods                        |
| -        | Task 2: Flow of<br>elastoplastic bulk solid<br>biomass | FV: Properties<br>PI: Flow data | Functional<br>relationships:<br><b>FV, PI, PCO, SWA</b> |
| <u>_</u> | Task 3: Flow of highly compressed feedstocks           | Same as #2                      | Same as #2                                              |
|          | Task 4: Mechanics of grinding                          | FV: Properties                  | Comminution<br>(same as #2)                             |
|          | Task 5: Mechanics of wear ( <u>reported in PI</u> )    | FV: Properties<br>PI: Wear data | Wear<br>(same as #2)                                    |

FV: Feedstock Variability Project (FCIC)
PI: Process Integration Project (FCIC)
PCO: Process Controls and Optimization Project (FCIC)
SWA: System-wide Throughput Analysis Project (FCIC)

#### **Bench scale**

- Characterization
- Physical tests
- Particle simulations
- Continuum simulations



# 2 – Approach (Technical, Cont.)

#### **Critical Success Factors**

- >85% agreement between models and verification tests.
- Acceptance of methods by OEMs and solids handling consulting firms.

#### Challenges

- Flow properties depend upon stress, strain rate, density, deformation history, etc.
  - There are multiple layers of <u>coupled flow mechanisms</u>
    - Elasticity, plasticity, viscosity, creep, damping, etc.

#### **Example: Particle Segregation During Baseline Tests**

- "Hair balls" exacerbate <u>material heterogeneity</u>.
- Segregation introduces <u>new transient effects with</u> <u>multiple time scales <u>III</u> OUCH <u>III</u>
  </u>
- Particles with different properties have different scaling behaviors !!! AUGH !!!
- Well designed flow tests must avoid segregation (fortunately, industry has good understanding of segregation; other issues are not as easy).



Bridging of Biomass into plug feeder



**Cablevey Jam** 

# 2 – Approach (Technical, Cont.)



10



2 – Approach (Technical, Cont.)



11

#### Many different tests have tried to predict biomass flow in hoppers, augers, etc.



**Prior work:** measured hopper opening size for flow vs. prediction based on Schulze shear test



*Hopper with detachable sections. Guan & Zhang, J. Food Engineering. 94, 227 (2009).* 



Angle of repose



Johanson "extrusion" test

- <u>No test has proven reliable to predict biomass flow</u>
- In Year 1, we focused on three tests (next slide) to understand flow behavior, which can be applied to hoppers, augers, etc. in future years

#### 2 – Approach & Both 3 – Accomplishments (Both Technical)



12





Modified Peschl shear tester (partner with E&G Associates)

Tests performed in the Feedstock Variability Project (1.2.2.40x).

Normalized lid rotation

- Known issues with Schulze shear tester
  - Non-uniform stress distribution
  - Non-ideal wall effects
- Do these issues cause poor flow predictions?
- Answer sought by combination of experiments & simulations
  - Idealized simulations match experiments
  - Results using more rigorous test (modified Peschl tester) match those from Schulze
- Conclusion: Poor flow predictions not due to non-ideal boundary effects

#### Root cause of poor flow predictions

- Biomass flow in both testers is
   ~ 1 dimensional
- Flow in real equipment is multi-dimensional



- Tests do not account for material anisotropy
- Tests do not account for coupling of flow mechanisms (analysis assumes simple shear)







#### Experimental and simulation results from direct axial shear test.



Panels (A)-(C): Force on intruder vs. time/distance <u>Agreement between experiments & simulations exceeds goal of 80%</u> <u>but still needs improvement (see next slides).</u> Agreement for experiments & continuum simulation\*

|                             | %         |  |  |  |
|-----------------------------|-----------|--|--|--|
| Parameter                   | Agreement |  |  |  |
| Shear strength (50% weight) |           |  |  |  |
| Material [Pa]               | 98%       |  |  |  |
| Pressure (average) [Pa]     |           |  |  |  |
| Intruder top (1)            | 98%       |  |  |  |
| Point 2                     | 100%      |  |  |  |
| Point 3                     | 24%       |  |  |  |
| Overall                     | 86%       |  |  |  |

Agreement for continuum & DEM simulation\*

|                             | %         |  |  |  |
|-----------------------------|-----------|--|--|--|
| Parameter                   | Agreement |  |  |  |
| Shear strength (50% weight) |           |  |  |  |
| Material [Pa]               | 95%       |  |  |  |
| Pressure (average) [Pa]     |           |  |  |  |
| Intruder top (1)            | 95%       |  |  |  |
| Point (2)                   | 100%      |  |  |  |
| Point (3)                   | 74%       |  |  |  |
| Overall                     | 91%       |  |  |  |

\*Does not include compression step or Schulze shear test –







- Episodic starts & stops are a result of shear banding (particle agglomerates with multiple time scales).
- This is what continuum models need to capture (very difficult)

#### <u>Continuum non-local granular fluidity</u> <u>model</u> implemented in OpenFOAM CFD

- Viscosity is a function of pressure and a new scalar field parameter "fluidity".
- Beverloo scaling of silo discharge and stop height on inclined planes were reproduced in 2D test simulations.
- Successful simulation of 3D conical hopper flow on HPC (32 cpus).

L/d = 1.7,

20

25

plugged

15

6

5

4

3

2

1

0

0

Ô<sup>2/3</sup>

Beverloo fit L = 0.17 m

L = 0.2 m

5

10

#### Time: 0.10 sec







Screw-Feeder modeling (model development co-funded with 3.3.1.2)

- Defined computational mesh for compression zone:
  - Rotating screw region and nonrotating stator region
  - $~10^{6}$  cells.
- Bingham yield-stress viscosity model with parameters inferred from literature.
- Preliminary simulations of 10 s took 48 h on 128 cpus.
- Evaluated wall shear stress on the auger surface.



# DEM hopper flow simulation results using mixed string and sheet particles (sphere diameter = 1 mm)



do NOT exhibit all critical flow behaviors.

Real biomass particles are much more complex.



#### Coupled flow modes result in complex flow, even for ideal particles

- Example: Hopper flow with "ideal" particles
  - Two particle types mixed and flowing in a hopper





Flow patterns at different discharge levels (INL/Clemson collaboration; submitted for publication).

- Oscillatory flow pattern is indicative of <u>mode coupling</u>
- Likely greater return on investment by focusing on flow modes rather than detailed particle properties.









#### **DEM model to mimic pine particles**

1. Create 6 DEM particle shapes and assemble distributions to match mass distributions of sieved pine chips.

| Picture | #<br>spheres |
|---------|--------------|
|         | 5            |
| s.      | 7            |
|         | 10           |
|         | 31           |
|         | 72           |
|         | 229          |



- 2. Simulated compression test compared with experiments
  - Simulation matches experiment after parameters are optimized (e.g. friction, density, cohesion, elasticity).



### 4 – Relevance



#### **Directly supports BETO's Mission:**

- Develop and transform our renewable biomass resources into commercially viable, high performance biofuels".
- F&H difficulties at pioneer biorefineries are leading to significant reduction in throughput versus design.

Verified simulations elucidate effects of biomass anisotropy, plasticity and elasticity to enable:

- Relating biomass properties to feeding performance.
- Improved design of equipment and processes (3 year goal).



**Operational Challenge** 

https://energy.gov/eere/bioenergy/downloads/ biorefinery-optimization-workshop-summary-report





- 1. Goal: Predict flow behavior of biomass in custom lab-scale flow test using physics-based simulation.
- 2. Approach: Integrated particle characterization and modeling with bulk characterization & reduced-order physics-based modeling.
- 3. Accomplishments: Achieved >85% agreement between lab scale flow test and physics-based simulations.
- 4. Project fulfills a critical need to provide feeding & handling solutions at all scales.
- **5.** (Key Findings
  - "Multi-scale" and "particle-based" is not enough.
     Must also address
    - Material heterogeneity.
    - **Coupling between flow mechanisms** (not captured by classical methods).
  - Non-local models (slides 15-16) and deformable-particle simulations (slides 18-21) are steps in the right direction
  - Particle and bulk (system) characterization and physicsbased simulation must progress jointly.





Non-classical method (non-linear, complex shear zone)

### **Publications**



24

- 1. TL Westover, D Hartley, Biomass Feeding and Handling, 2018. Chapter in book Biofuels - Past, Present and Future, edited by Dr. Madhugiri Nageswara-Rao and Dr. Jaya R. Soneji, In-Tech Publishing.
- 2. TL Westover, Y Xia, J Klinger, 2018. Understanding and Solving Biomass Feeding and Handling Challenges, Agri Res & Tech: Open Access J 2018; 16(2), 1-2.
- 3. Y. Xia, Z. Lai, T. Westover, J. Klinger, H. Huang, Q. Chen, Discrete element modeling of deformable pinewood chips in cyclic loading test, Powder Technology, 2018 (reviewed, under minor revision).
- 4. Z. Lai, Y. Xia, H. Huang, T. Westover, Q. Chen. Discrete element modeling the granular hopper flow of deformable-irregular particles, Powder Technology, 2018 (submitted, under review).



### The Team







Tyler Westover, Ph.D.





PURDUE







# MATERIAL FLOW SOLUTIONS, Inc. The Solids Flow Specialists



Jonathan Stickel, Ph.D.



Hariswaran Sitaraman, PhD.













James Lischeske



George Fenske, Ph.D.



Oyelayo Ajayi, Ph.D.





26

# ≈10 MINUTES FOR QUESTIONS

# 3 – Technical Accomplishments



27

- For decades it has been assumed that a correctly designed shear tester could provide the material properties to predict behavior
- Actually, multiple testers are needed to probe different flow modes <u>and their coupling</u>
- We have selected flow tests to enhance separating particle, bulk and boundary effects. Flow tests include axial shear, rotary shear, and hopper flow.







Modified Peschl shear tester (partner with E&G Associates)



# 2 – Particle Modeling (Technical Approach Cont.)



28

#### **Discrete element method (DEM)**

- Model the motion and deformation of each particle
- Can capture all the dominant mechanics for robust, physics-based modeling.
  - Difficult to scale due to high computational cost
  - Not feasible for realistic biomass materials (too many particles, sizes, & shapes)
  - Used to validate scalable reduced-order (continuum) models
  - Currently available models do not include all needed capabilities

#### **Three Available Methods**

#### **#1. Rigid particles**

- Custom particle shapes & properties (important for biomass !!!)
- Rigidity is problematic



#### #2. Flexible coupled spheres

- Custom properties
- Limited to coupled spheres (problematic)

#### #3. Flexible polyhedra

- Custom particle shapes
- Properties are currently limited (problematic)



#### Zhong et al., Powder Technol. 2016.

# 2 – Continuum Modeling (Technical Approach Cont.)

#### Single inhomogeneous material deforms according to flow rules

- Elasticity (Hooke's law):  $\varepsilon_{ij}^{el} = \frac{1}{E} \left[ (1 + \nu)\sigma_{ij} \nu \delta_{ij}\sigma_{kk} \right]$
- Plasticity: Deformation at constant stress & volume (yield criterion, plastic potential)
- Viscosity: Deformation with dependence on strain rate
- Creep: Deformation occurs at multiple time scales
- Damping: Energy dissipation, coupling between flow modes

- We do not actually know the flow rules for biomass, except they are likely non-linear, highly coupled and include dependencies on density, pressure, deformation history, etc.
- Robustness of model predictions depends upon myriad of flow rule assumptions



29

INL simulation: Flow of pine media in a wedge hopper

# **Accomplishments**

- Simulations performed using "ring" cell and rectangular cell with periodic boundary conditions.
  - Panels (A) and (B): particle arrangements before and after application of gravity and normal load, respectively.
  - Panels (C) and (D): Impact of Young's modulus for the rectangular and rotational geometries, respectively.
- Simulations used simple rigid sphere particles and reasonably mimicked physical tests
- Numerous physical tests prove that ring shear tester is not suitable to measure biomass flow properties.
- Simulations with simple particle model could not offer strong insight into flow behavior (<u>Lesson Learned</u>)



(B)