DOE Bioenergy Technologies Office (BETO) 2019 Project Peer Review

SOFAST: Streamlined Optimization of Filamentous Arthrospira/Spirulina Traits

March 5, 2019 Technology Session Area Review

> Damian Carrieri Lumen Bioscience

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Goal Statement

- Arthrospira species ("Spirulina")
 - Cyanobacteria with proven industrial outdoor cultivation capabilities.
 - Lumen has unique, patented technology to genetically enhance Arthrospira for improved growth and biomass composition for biofuels and bioproducts.
- <u>Goal</u>: To produce engineered Arthrospira platensis strains with improved photosynthetic and cold-tolerance traits and increased lipid content.
- <u>Outcome</u>: Demonstrate successful and stable outdoor productivity of 6 engineered Arthrospira strains with at least 1 achieving growth rates of at least 19 g/m²/day (AFDW) and at least 14% lipids and 16% carbohydrates.
 - Develop strain improvement toolkits and methods (SOFAST)
 - Increased areal productivity <u>AND</u> projected biofuel yield using these toolkits and methods
 - Response to PEAK CHALLENGE FOA, MYP2019 for goals by 2021

PEAK CHALLENGE FOA, MYP2019 GOALS

"By 2021, develop strain improvement toolkits and technologies that enable algae biomass compositions in environmental simulation cultivation conditions that represent an energy content and convertibility of 80 GGE of advanced biofuel per ash-free dry weight ton of algae biomass."

Quad Chart Overview

Timeline

 Project start date: October 2017 Project end date: September 2020 Percent complete: 50% 			Aft-C. Biomass Genetics and Development Aft-E. Algal Biomass Characterization, Quality, and Monitoring			
	FY 18 Costs	Total Planned Funding (FY 19-Project End Date)	Objective: To produce engineered Arthrospira platensis strains with improved photosynthetic and cold-tolerance traits and increased lipid content.			
DOE Funded	385,396	1,465,980	End of Project Goal:			
Project Cost Share	159,337	440,206	Demonstrate successful and stable outdoor productivity of 6 Arthrospira strains with at least 1 achieving growth rates of at least 19 g/m ² /day with at least 14% lipids and 16% carbohydrates			
•NREL (34%)						

Parriars addressed

Project Overview

	Arthrospira spec	cies, "Spirulina"			
PROS		CONS			
(Advantages of this pla	tform)	(Addressed in this project)			
 Cultivated outdoors globally (food, feed, cosmetic industries) Robust growers, resistant to predation Easier to harvest compared to unicellular algae Can be grown in saline or wastewater-based media 		 Variable biomass composition with high protein content / low fatty acid content Limited molecular biology tools were available Decreased biomass accumulation under light and cold stresses 			
National Renewable Energy Laboratory	Lumen Bioscience				
 High throughput methods for biomass characterization 	 Increases lipid production in cyanobacteria (wax esters) Can genetically engineer Arthrospira and select for optimal expression Demonstrated traits that alleviate light and cold stresses in cyanobacteria 				

This project aims to optimize expression of traits in <u>Arthrospira</u> that increase outdoor biomass productivity and enhance biomass composition for production of biofuel intermediates

Approach (Management)

Lumen Bioscience	National Renewable Energy Laboratory (NREL)	Arizona Center for Algae Technology and Innovation (ASU)
 Molecular biology and traits Strain and library construction Streamlined selection of traits Strain engineering, sequencing, and characterization Artificial light (indoor) culturing and validation 	 <u>Analytical</u> Biomass characterization by traditional and higher throughput methods Lipidomics characterization in WT and engineered strains Development of single-filament phenotyping and NIR high-throughput methods for <i>Arthrospira</i> 	 Outdoor cultivation Outdoor (sunlight) culturing Media optimization for outdoor culturing
Jim Roberts: PI	Lieve Laurens: Co-PI	John McGowen: Cultivation management

Approach (Technical)

Transform \rightarrow Compete \rightarrow Sequence \rightarrow Build \rightarrow Test \rightarrow Stack \rightarrow Grow

- 1. **Transform** libraries of traits with various coding sequences and promoter/terminator strengths (100+ variants in each library).
- 2. Compete transformed libraries against control cells (expressing YFP) or each other.
- **3. Sequence** the genomes of the competed populations to identify constructs that imparted the best fitness or most wax esters without severe growth defects.
- **4. Build** top constructs into *Arthrospira* to produce strains expressing traits at optimal levels.
- Test newly made strains for improved growth rates or metabolic profiles relative to *wild type* control runs. End of Phase I, <u>GO/NO-GO 2 – (Sept 2019)</u>
- 6. Stack best performing traits to produce strains with combined improvements in both growth and wax ester accumulation.
- Grow stacked strains in indoor and outdoor test beds alongside wild type controls. End of Phase II, <u>PEAK Challenge – (Sept 2020)</u>

Critical Success Factor	Challenge	Strategy
Expression of stress resistance and cold tolerance traits that improve growth.	Stress resistance and cold tolerance traits can adversely affect growth if expressed too strongly or be ineffective if expressed too weakly.	Use traits already demonstrated to improve growth in cyanobacteria. Compete diverse libraries with a wide range of expression levels. Frequently monitor competitions over time and with replicates.
Production of wax esters without severe growth defects.	Expression levels of enzymes in the wax ester synthesis pathway must be well-proportioned to avoid accumulation of damaging intermediates.	 <u>Same as above</u> and: Use two-gene cassettes, minimizing the number of enzymatic steps. Monitor wax ester production with single-filament mass spectrometry population statistics.
Models that accurately determine biomass composition from high throughput data are needed.	Many representative samples must be used to train a robust model.	Generate a large number of samples from diverse growth conditions.
Improvements to strains in the laboratory must translate to improve outdoor performance.	They may not.	Compete and test strains under conditions that closely resemble outdoor cultivations.

Approach

	Year 1 - FY 18		Year 2 - FY 19				Year 3 - FY 20					
	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12
	Dec-19	Mar-19	Jun-19	Sep-19	Dec-19	Mar-19	Jun-19	Sep-19	Dec-19	Mar-19	Jun-19	Sep-19
Validation												
PHASE I: Strain development and phenotyping												
PHASE II: PEAK challenge												
Task 1: Validation												
1.1 Process and cultivation readiness demonstration	G/NG											
1.2 Interim performance validation								G/NG				
Task 2: Strain Development (LUMEN)												
2.1 Monitoring competition growth by fluorescence												
microscopy and Sequencing												
2.2 Stress tolerance												
2.3 Wax ester production												
2.4 Trait stacking												
Task 3: Metabolic Phenotyping of Improved Strains												
(NREL)												
3.1 Single filament phenotyping by high resolution												
mass spectrometry												
3.2 Whole cell biomass metabolic fingerprinting												
Task 4: Cultivation and Pond Operational												
Management (Lumen, NREL, ASU)												
4.1 Indoor sclae up and indoor / outdoor cultivation												
4.2 Test successful traits in ePBRs and indoor large												
cultivation												
4.3 PEAK challenge												

Progress, Traits: in situ competitions

Progress, Metabolic Profiling

Compositional analysis of *Arthrospira* biomass (>35 samples) indicates a dynamic nature, responsive to media composition and cultivation conditions

Also: Ultrahigh-resolution mass spectrometry is allowing for rapid, **in situ lipidomic profiling** of <u>single filaments</u> of *Arthrospira* from wax ester strain competitions. (under method refinement)

Protein

NIR spectroscopy used to build model that uses high throughput data to predict **protein content with ~4% accuracy**

Progress, Growth: Indoor

Parameter	Phenometrics ePBR	Raceway Pond (indoor)
Light cycle	16/8-hour light/dark cycle	16/8-hour light/dark cycle
Light intensity	1650 μE*m ⁻² *s ⁻¹ sinusoidal light	1000-1500 μE*m ⁻² *s ⁻¹ square wave light
Temperature	30°C constant	Low of 24°C (night) – high of 34°C (day)
CO ₂ delivery	pH control with CO ₂ (on/off)	pH control with CO ₂ (on/off)
рН	Maintained below 10	Maintained below 10
Inoculation density	0.05 OD750	0.05 OD750
Culture volume	500 mL	100 L
Reactor illuminated area	37 cm ² (0.0037 m ²)	0.5 m ²
Average growth rate	4.25 ± 0.18 g/m²/day (AFDW)	11.84 ± 3.6 g/m²/day washed ~ 9.5 g/m²/day AFDW

New experiments are planned for indoor, flat-panel reactors.

Progress, Growth: Outdoor

2'x2' flat panels

800 ml bubble columns

(1.5" light path), 15 L

4'x8' flat panels (1.5" light path), 100 L, in greenhouse

More work needed to demonstrate baseline outdoor growth and relate with indoor culturing.

Setup	Conditions
Bubble columns and indoor flat panels	30°C Constant Light (150 μE*m ^{-2*} s ⁻¹) Air only sparging
Greenhouse panels	Seasonal light and temp 2% V/V CO ₂ in air, day. Air only, night.

ASU - AzCATI

Relevance

Goals of project: To enhance outdoor growth and lipid content in Arthrospira platensis strains through streamlined optimization of genetic traits resulting in at least one achieving growth rates of at least 19 g/m²/day and at least 14% lipids and 16% carbohydrates.

Project Feature	Relevance
Working with Arthrospira platensis	A robust strain, novel to the BETO AAS program, resistant to predation, with commercially demonstrated outdoor production. More easily harvested than unicellular algae.
Optimization of stress-resistance traits	Increases productivity and robustness to factors such as temperature, seasonality, and competition.
	Addresses BETO Barrier Aft-C. Biomass Genetics and Development.

Relevance

Project Feature	Relevance
Optimization of wax ester expression traits	Increases fraction of compounds important for biofuel / bioenergy production thereby enabling algae biomass compositions in environmental simulation cultivation conditions with increased energy content and convertibility.
Development of high- throughput metabolic profiling methods	Increases understanding and characterization of variability in novel feedstock characteristics. Addresses BETO Barrier Aft-E. Algal Biomass Characterization, Quality, and Monitoring
Cultivation targets	Demonstrates translation of laboratory improvements to industrially relevant (outdoor/solar) cultivation approaches, <u>driving down the cost of biomass production</u> . Produces <u>strains</u> <u>that can be licensed</u> with demonstrated enhanced ability to be grown outside for biofuels. Demonstrates <u>traits and</u> <u>engineering tools that can be licensed</u> for enhanced algal biofuel productivity in <i>Arthrospira</i> or other cyanobacteria.

Future Work

Key tasks to complete:

- Wax ester competitions. -- ON TRACK
 - Evaluate top 5 strains making wax esters, growth rates not more than 10% slower than wildtype control
- Trait building and validation -- ON TRACK <u>Go/No-Go</u>
 - Identify, build, and select a set of at least 4 specific improved strains (2 stress/cold, 2 wax ester). Target of 20% improved productivity in stress strains, >12% lipids in wax ester strains
- Trait stacking -- ON TRACK
- Demonstrate single filament phenotyping by mass spectrometry ON TRACK
- Apply whole cell biomass metabolic fingerprinting to new strains ON TRACK
 - $_{\odot}~$ Phenotyping analysis used to select top stacked strains for PEAK challenge
- Outdoor baseline cultivations -- DELAYED, changed to flat panels which will increase number of runs, expect to be back ON TRACK by Sept 2019
- Peak Challenge
 - Outdoor productivity of 6 improved Arthrospira strains, at least 1 achieving 19 g/m²/day with simultaneous compositional improvements of >14% lipids and >16% carbohydrates.

Future Work: Highlighted Near-term Deliverables (FY2019)

Near-term Deliverables (FY 2019)	Deadline	Anticipated Delivery Date
Establish baseline growth (mean and variance) for wild-type <i>Arthrospira</i> indoor and outdoors and develop a predictive protocol to be used for translating growth improvements.	June 2018	September 2019
Rebuild at least 10 strains from the best performers identified. (Towards demonstration of at least 20% productivity improvement over baseline (stress and cold tolerance), see below).	March 2019	March 2019
Identify and rebuild the top 5 strains with the most promising constructs of genetically distinct wax ester expression traits.	March 2019	May 2019
Demonstration that complex libraries can be screened in growth competitions and metabolic phenotypes established by NREL technologies. Identify, build , and select a set of at least 4 specific improved strains (2 stress resistant strains and 2 wax ester producing strains). Targets are 20% improvement over baseline and 12% lipid for wax ester single trait strains, respectively.	September 2019	September 2019

Future Work: Highlighted Longer-term Deliverables (FY2020)

Longer-term Deliverables (FY 2020)	Deadline	Anticipated Delivery Date
Test 4 improved (single trait) strains in outdoor cultivation (Season 1: Winter/Spring) and demonstrate at least 50% productivity improvement in biomass or a lipid content of 16%.	March 2020	March 2020
Test 4 improved (single trait) strains in outdoor cultivation (Season 2: Summer) and demonstrate at least 50% productivity improvement in biomass or a lipid content of 16%.	August 2020	August 2020
Outdoor cultivation demonstration for stacked trait strains with demonstrated viability and report on growth data.	September 2020	September 2020
End of Project Goal: Outdoor productivity of 6 improved <i>Arthrospira</i> strains, at least 1 achieving 19 g/m ² /day with simultaneous compositional improvements of >14% lipids and >16% carbohydrates.	September 2020	September 2020

Summary

The project aims to enhance growth and lipid content in an industrially relevant cyanobacterium, *Arthrospira platensis*.

<u>Approach</u>: combine genetic engineering and selection approaches with high-throughput biomass characterization to select for winning genetic constructs that we transform into *Arthrospira* stains. Transform \rightarrow Compete \rightarrow Sequence \rightarrow Build \rightarrow Test \rightarrow Stack \rightarrow Grow

Progress:

- ✓ In situ competitions
- ✓ Metabolic profiling
- ✓ Indoor growth baselines
- Outdoor growth baselines and indoor/outdoor comparisons

Relevance:

- A robust strain, resistant to predation, with commercially demonstrated outdoor cultivation, will be improved for outdoor growth AND biomass composition, <u>driving down the cost of biomass</u> <u>production</u>.
- Potential for <u>licensing strains, traits, and genetic</u> <u>tools</u> for algal biofuel production.

Future work:

BUILD new strains based on stress resistance and wax ester competitions.

TEST single traits against controls indoors and in outdoor testbeds. Target: 20% enhancementSTACK best traits.in growth / >12% lipids

GROW stacked strains with improved growth AND wax ester accumulation.

19 g/m²/day, > 14% lipid, >16% Carbohydrate.

Thank you

Bioenergy Technologies Office, DOE award EE0008120 (1.3.2.601)

Lumen	NREL	ASU
Jim Roberts	Lieve Laurens	John McGowen
Rachelle Lim Troy Paddock Lauren Goetsch Colin Brady	Peter V. Shanta Steven Rowland Nicholas Sweeney Kylie Smith	Jessica Forrester

DOE

Dan Fishman Elizabeth Burrows

Supplemental: Stress Library Composition as built

Gene	Total Reads	Promoters Present	CDS present	Terminators present	Theoretical library diversity	Actual Library Diversity based on PacBio Sequencing
nblA	25400	21/22	3/3	3/3	198	173
Flv3	6817	21/22	2/2	3/3	132	121
NSrrA	26241	20/22	3/3	3/3	198	169
ΡΤΟΧ	35260	21/22	4/4	3/3	264	232
desA	19998	19/22	2/2	3/3	132	93

