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Goal Statement

« The goal of this project is to design and develop next generation
biocatalysts and bioprocesses enabling low cost capital costs for
cellulosic biofuels production. This will be achieved via process
intensification and the utilization of dynamic metabolic control (DMC).
DMC converts growing cells into productive stationary phase
biocatalysts which can be recycled at high cell densities to achieve

high volumetric productivities and reduce plant costs. Key goals are
given in Table 1 below.

f Table 1: Program Goals

i. Key Performance Metric | Units State of the Art | Current | Program Targets
' Rate | g/L-hr 2-4 | <01 | >25

Specific Rate g/gDCW-hr 0.05-0.2 <0.1 >0.75
Scale - >0k | 3000 | 200
' TRL - - | TRL3 | TRL 5/6
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Relevance Capex is a Key barrier to commercialization

Reported Capex for Various Processes

Capex -
Example Process ($ per gal annual capacity) S per 100Mgal/y facility
Petrochemical Plant $3-512 S300 M-$1.2 B
Cellulosic EtOH — NREL 2012 $6.92 S692 M
Cellulosic EtOH —Poet-DSM 2014 $13.75 S1.48B
Cellulosic h-carbon—-NREL-2013 $18.60 S$1.88B
Corn starch ethanol * $1.10 S110M
Proposed Process $0.50 S50 M

* Does not include corn milling costs

Large Capital Costs are a NO-GO Point on the commercialize bio-based processes.
- Often risky first of their kind plants
- Competitive Capital investments (petro) are proven
- Plant level ROI are not manageable even with low costs of capital

For a $500M investment 20% minimal ROI and ten year payback period you
would need to make a profit of $0.60/gallon on a 100M gallon/year facility,
assuming 0 cost of capital. - No-one should put their money here.

A $50M investment only requires a $0.06/gallon profit.
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Approach: Two Stage Dynamic Metabolic Control

Stage 1: Catalyst Production Stage 2: Catalyst Activity

Switch catalyst on

Convert

Feed
1
T By-products
g A 1] 2
i M ]
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Biomass - Biomass | S,
DMC t
Genetics optimized » — Genetics optimized [
for accumulating for maximum
maximum catalyst chemical production
v
Biomass Production Biomass Production
DNA DNA DNA DNA
) — |
RNA RNA RNA RNA
‘ e
Growth Production Growth Production
Enzymes Enzymes o Enzymes Enzymes
Adapted from Burg et al, Current Opinions Chem. Eng., 2016 D
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Approach: Two Stage Dynamic Metabolic Control

Stage I: Growth

Limiting Nutrient

Limiting Nutrient Concentration

Biomass

Stage II': Production

roduct

—

Time
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Approach: Two Stage Dynamic Metabolic Control

A ¢+ | Suge 1 Grown Stage Il Producton . ( C

Standardized Bloprocess (1L n>=2)

10
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PRocess Intensification for the reduced CommeErcial
CAPEX of Biofuels Production (PRICE CAP)

Biocatalyst: Production Process:
C6&CS W o 1) Highly Productve Stat
’ : : y Pro % Stationary
Sugars Pathmay -n-w Production Fermentation Phase >1 g product/ gCOW-tw
b (125 000-250,000 L) | 2) Macronutrient Limited
Acetrh-Col \ minimizes impact of
' g Rrtine contaminants
~ W“""‘: Syrase 2) Robust Process
’ 3) Very Low Mass and Heal transfer
W mp OGrown requirements
Netairn Famasene
C68CS5 w  mp
Sugars
Farnesene

' Growth Process ‘\

1) Rapid Biomass Growth

2) Maximize Biomass Yeld

3) Limat ncreased Mass Transler
Requirements to Small scale

s

Growth Fermentation
(300-1000L)

Continuous Downstream

Stainless (125,000L)
For Scale Purposes
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Technical Approach: Key Program Deliverables

Techno-economic Analysis to validate the Price Cap Approach
High Cell Density Fermentations

Develop E. coli strains engineered cellulosic sugar co-utilization
Demonstrate high rates of farnesene production

Demonstrate semi-continuous processing

Demonstrate system integration
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Technical Approach: Key Program Deliverables

Techno-economic Analysis to validate the Price Cap Approach
High Cell Density Fermentations

Develop E. coli strains engineered cellulosic sugar co-utilization
Demonstrate high rates of farnesene production

Demonstrate semi-continuous processing

Demonstrate system integration
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TEA & Process Model
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Process Flow Diagram
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Price Cap TEA Summary

Base Case:
— Spec. Rate = 0.75 g/gDCW-hr
— Yield = 80% of theoretical Installed Cost Breakdown:
— Cellulosic sugars supplied at 14wt% Bioconversion and Downstream
— IRR=10%
— 30-year plant life
— Biomass Concentration = 40 gDCW/L
— Working volume = 275m3 per vessel 30%
 Fermentation and biomass
separation: ~45% of total

capex

« Downstream recovery and ‘
utilities: ~55% of total capex

* Fermentation share of capex
small compared to incumbent
processes

* Model Accuracy +/- 30%

= Fermentation

® Biomass-Removal
Centrifuges

» Oxygen Separation
Chillers

® Decanters

= Polishing centrifuge

12%

Hydrotreatment
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Capex Sensitivity

Installed cost per gallon of capacity vs. specific
productivity and cell density

F s " «Minimum capex is
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Note: Equipment sizing is discrete, resulting in various “steps”

in the response surface
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Opex Sensitivity

Opex per gallon of product vs. specific productivity
and cell density
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TEA Summary

Capex

Opex

Start Up MSP
Final Plant MSP 1

Fermentation
Product

*Notes

Installed
cost/gal of
capacity

S/gal

S/gal
S/gal

NREL 2013

Hydrocarbons

$2.02

$2.84

$5.35
$4.80

FFA

' After full depreciation of capital and repayment of loan.
2 Low cell-recycle capex proposes 50% reduction for cell recycle capital.
3 Production of farnesane would eliminate need for hydrotreatment.
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PRICE CAP
Stretch
Low cell-
recycle
capex 2

PRICE CAP
PRICE CAP Stretch
Stretch Farnesane
Farnesane 3 | Low cell-recycle
capex 23

0.75 $0.72 $0.63 $0.50 $0.41
$2.93 $2.61 $2.60 $2.59 $2.59
$5.18 $4.61 $4.59 $4.49 $4.48
$4.36 $3.87 $3.87 $3.85 $3.85

Farnesene Farnesene Farnesene Farnesane Farnesane
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Capex Glide Path for Cost Reduction

Capex Comparison
fommmmmm————— e mmmm e mm e
$2.25 ! Strain : ,  Different Fuel Molecule !
S ' Improvements : & Cell Recycling !
Y. T . -\ - _ ! Improvements I
o . | R el Rl
a S51.7% Cell recycling 1
o Improvements |
55150 AW 4409\ @ --eeeen-e---- e
1
S ! Different Fuel Molecule !
- i ' (No Hydrotreatment)
2 (No Hydrotreatment) !
¥ 51.00
g
S so0.7s
B -
= $0.50 e
g R m———tu
s H B B B
S.
NREL 2013 Installed PRICE CAP: Base PRICE CAP: Stretch  PRICE CAP: Stretch, PRICE CAP: Stretch, PRICE CAP: Stretch,
Cost SO% capex forcell famesane as ferm farnesane as ferm
recycle product Product and 505
capex for cell recycle
® Fermentation ® Biomass-Removal Centrifuges ® Oxygen Separation
Chillers ® Decanters ® Polishing centrifuge
®m Hydrotreatment W Feed evaporator

— PRICE CAP addresses high cost of fermentation capex
+ Some DSP cost reductions as well, due to lower cost of hydrogenation vs. decarboxylation

— Further efforts needed to reduce cell recycle and downstream conversion costs Dllk e
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Technical Approach: Key Program Deliverables

Techno-economic Analysis to validate the Price Cap Approach ¥~
High Cell Density Fermentations

Develop E. coli strains engineered cellulosic sugar co-utilization
Demonstrate high rates of farnesene production

Demonstrate semi-continuous processing

Demonstrate system integration
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High Biomass
Fermentations
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High Biomass Fermentations

Impact of Media Formulation on Growth/Biomass Levels

oD
(600nm)

:

Time (hrs)
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Technical Approach: Key Program Deliverables

Techno-economic Analysis to validate the Price Cap Approach V
High Cell Density Fermentations ¢

Develop E. coli strains engineered cellulosic sugar co-utilization
Demonstrate high rates of farnesene production

Demonstrate semi-continuous processing

Demonstrate system integration
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Cellulosic Sugar
Utilization
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Cellulosic Sugar Pathways

Ghucose ~ -
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Strain Engineering Plan
Wild Type Engineered
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Cellulosic Sugar Co-Utilization — Year 1 Results

Co-utilization of Glucose/Xylose, Arabinose & Cellobiose

Growth on Cellulosic Sugars

A - Biomass (gCOW/L)

Glucose

Cellobilose

Xylose/Galactose

Sugars/ Biomass (g/L)
oo

- Arabinose

0
0.000 5000 10,000 15000 20000 25000 30000 35000 40.000

Time (hrs)

Total Sugars ~ 25g/L
(14.1 g/L Glucose,7.5 g/L Xylose, 1.2 g/L Arabinose, 0.6 g/L Galactose, 0.6 g/L Cellobiose, 0.3 g/L Acetate)
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Strain Engineering Plan

Wild Type Engineered
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Cellulosic Sugar Co-Utilization- Recent Results

Co-utilization of Glucose, Cellobiose, Galactose, Acetate

18
16
14
12
Biomass (gCOWIL)
& 10
Sugars (g/L)

4 \
Acetate, \1
2 . Galactose
Cellobiose
0 k - 3 £} -
0 10 20 30 40 50 60 70
Time (hrs)

Starting sugar levels are low, and quickly go below limit of detection, repeat
experiments are planned with higher sugar levels.
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Technical Approach: Key Program Deliverables

Techno-economic Analysis to validate the Price Cap Approach V

High Cell Density Fermentations

Develop E. coli strains engineered cellulosic sugar co-utilization (/5% Complete)
Demonstrate high rates of farnesene production

Demonstrate semi-continuous processing

Demonstrate system integration

L=
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Farnesene
Production
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Mevalonate/Farnesene Production
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Higher Levels of Pathway Expression Engineered

a Clone 1 Clone 2
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Screening of Farnesene Pathway Variants

Farnesene Production in Screening Scale*

4 Maximal Specific rates > 0.47g9/gCDW-hr.
Supports rates > 23 g/L-hr @ target biomass levels

Titer
(g/L)

Pathway Variant

*Farnesene screening results are using strains from previous iteration of the T7 induction system D k
UKe

DOE BETO PEER Review , Denver, CO, March 2019 Eagincering



Y -«
Technical Approach: Key Program Deliverables

Techno-economic Analysis to valldate the Price Cap Approach V

High Cell Density Fermentations "

Develop E. coli strains engineered cellulosic sugar Co- -utilization (75% Complete)
Demonstrate high rates of farnesene production ¥

Demonstrate semi-continuous processing

Demonstrate system integration
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Semi-Continuous Processing
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Semi-Continuous Process Automation

Hardware and control systems
developed for automated semi-
continuous fermentation

Data Log Excerpt from PRICECAP Automation Testing
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Semi-Continuous Process Initial Results - Mevalonate

Residual GLC Conc. (g/1)
0
25 ¢ »
$2 \
. \ Coll Recyche J
5 g : o Control P
“ o
= \ -
s
° > - -—— -
- 12 1 52 7
Time ()
OD600
' ¥ i . Call Recwcle
- ' =~Control Titer Rate Yield
Cell 20.3 0.33 0.14
Recycling
Time (EF7 Control 23.5 0.38 0.19
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Media Optimization - DoE

Design of Experiments utilized to optimize media formulation

$
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Trace metals have a large impact on mevalonate productivity.
Media Optimization for continuous process ongoing. Duke
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Technical Approach: Key Program Deliverables

Techno-economic Analysis to validate the Price Cap Approach ¥

High Cell Density Fermentations

Develop E. coli strains engineered cellulosic sugar co-utilization (75% Complete)
Demonstrate high rates of farnesene production ¥

Demonstrate semi-continuous processing (50% Complete)

Demonstrate system integration - Ongoing
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Future Work

« Complete Evaluations of cellulosic co-utilization strains
 Integration of strain components into combined strains
« Continued optimization of semi-continuous process.

* Deployment with real-world cellulosic sugars.
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Quad Chart

$1279504  $38,846 $561,201

$127950 $3885 $56,120

82% 60% 75%

18% 40% 25%




Questions
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