Catalytic Upgrading of Biochemically Derived Intermediates (CUBI)

R.T. Elander1, D. Vardon1, D.K. Johnson1, Z. Li2, A.D. Sutton3, V. Dagle4, K.K. Ramasamy4

March 4, 2019
Integrated and collaborative portfolio of catalytic technologies and enabling capabilities

Catalytic Technologies

- Catalytic Upgrading of Biochemical Intermediates (NREL, PNNL, ORNL, LANL, NREL*)
- Catalytic Upgrading of Indirect Liquefaction Intermediates (NREL, PNNL, ORNL)
- Catalytic Fast Pyrolysis (NREL, PNNL)
- Electrocatalytic and Thermocatalytic CO\(_2\) Utilization (NREL, ORNL*)

Enabling Capabilities

- Advanced Catalyst Synthesis and Characterization (NREL, ANL, ORNL, SNL)
- Catalyst Cost Model Development (NREL, PNNL)
- Consortium for Computational Physics and Chemistry (ORNL, NREL, PNNL, ANL, NETL)
- Catalyst Deactivation Mitigation for Biomass Conversion (PNNL)

Industry Partnerships (Directed Funding)

- Gevo (NREL)
- ALD Nano/JM (NREL)
- Vertimass (ORNL)
- Opus12 (NREL)
- Visolis (PNNL)
- Lanzatech (PNNL) - Fuel
- Gevo (LANL)
- Lanzatech (PNNL) - TPA
- Sironix (LANL)

Cross-Cutting Support

- ChemCatBio Lead Team Support (NREL)
- ChemCatBio DataHUB (NREL)

*FY19 Seed Project
Goal Statement

Project Goal

• Develop and evaluate several routes for catalytic upgrading of biomass-derived sugars/related intermediates into hydrocarbon fuels and co-products, including:
 – Alcohols/diols
 – Carboxylic acids
 – Sugars and sugar-derived intermediates

Primary Project Outcome

• Select and develop **at least one route** for catalytic upgrading of sugars/related intermediates and/or biologically derived intermediates into fuel blendstocks with conversion performance than can achieve a **MFSP of $3/GGE by 2022** with >25% (GGE basis) of the fuel in the jet or diesel ranges

Relevance

• Facilitate **transition** from catalytic upgrading of **clean sugars** (cane and starch-derived) to **cellulosic sugars**/derived intermediates to enable commercialization
• Provide a **quantitative performance and economic assessment** of several catalytic upgrading approaches using **biomass hydrolysis/fermentation** intermediates
• Quantify performance and economic impacts of **biogenic inhibitors**
• Typical biochemical conversion feedstock types are potential **high-volume** biomass sources (> 500 millions dry tons/year by 2040)
 – Agricultural residues (corn stover, wheat straw, etc.)
 – Herbaceous energy crops (switchgrass, miscanthus, etc.)

Quad Chart Overview

Timeline
- Project start date: 10/1/2016
- Project end date: 9/30/2019
- Percent complete: 80% (current 3-year cycle)

Total Costs

<table>
<thead>
<tr>
<th></th>
<th>FY 17 Costs</th>
<th>FY 18 Costs</th>
<th>Total Planned Funding (FY 19-Project End Date)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE Funded</td>
<td>$1.63M</td>
<td>$1.79M</td>
<td>$2.23M</td>
</tr>
<tr>
<td>Project Cost Share*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Objectives

Develop and evaluate several routes for catalytic upgrading of biomass-derived sugars/related intermediates into hydrocarbon fuels and co-products, including alcohols/diols, carboxylic acids, and sugars/sugar derived intermediates.

End of Project Goal

Quantify performance of catalytic upgrading performance using biochemical conversion process-derived intermediates in a fully integrated TEA model.

- Describe the relative levels of development of each technology within CUBI, the most promising CUBI pathway(s), and what are the critical remaining research needs to achieve an MFSP of <$3/gge.

Barriers addressed

- Ct-E: Improving Catalyst Lifetime
- CT-F: Increasing the Yield from Catalytic Processes
- ADO-A: Process integration

Partners:
- NREL (65%)
- ORNL (12%)
- PNNL (12%)
- LANL (11%)
1 – Project Overview

Context and History

- Prior to FY17, several independent projects across several national labs were investigating the catalytic upgrading of Biochemical Conversion process intermediates

- A multi-lab core Catalytic Technologies project began in FY17 within ChemCatBio – focused on biochemically-derived intermediates
 - Catalytic Upgrading of Biochemical Intermediates (CUBI)

- Eliminated duplicative efforts and ensured a systematic and integrated approach
 - Common process intermediates, catalyst/reactor systems, analytical and fuel characterization, TEA, etc. across multiple national labs

Broad Project Impact

- Exploiting the specificity of intermediate compounds generated via biochemical deconstruction (hydrolysis, dehydration, etc.) and biological upgrading (fermentation) to catalytically produce a range of targeted hydrocarbons
 - Primary effort within BETO portfolio for “downstream” Biochemical Conversion process development and integration
• Project organized according to catalytic upgrading routes being investigated within Biochemical Conversion portfolio

Upgrading Approach

- **Chemically derived intermediates**
 - Furfural
 - HMF
 - Condensation
 - HDO
 - C10-C20 paraffins

- **Biologically derived intermediates**
 - Alcohols/Aldehydes/Ketones
 - Carboxylic Acids
 - Diols
 - Multiple Approaches
 - C8-C16 paraffins, MEK, 1,3-Butadiene

Transportation Fuels and Biochemical Products
- (diesel, jet, gasoline, etc.)

Tasks
- **Task 1**: 2,3-butanediol (BDO)
- **Task 2**: Carboxylic acids
- **Task 3**: Sugars/sugar-derived intermediates
- **Task 4**: Hydrolysate/fermentation broth production; techno-economic analysis
2 – Approach (Management)

Capabilities and Expertise Across Multiple National Laboratories

Pilot Scale Hydrolysate Production
- High-throughput catalyst testing
- Catalyst characterization
- Fuel property testing
- TEA

Packed-Bed Flow Reactor
- Hydrolysate/fermentation intermediates
- Catalyst characterization
- High throughput/flow testing
- Fuel property testing
- TEA

Zeolite Synthesis
- Zeolite expertise applied to biomass derived alcohols/diols
- Coordination with Separations Consortium

Atom Scale Characterization
- HDO optimization in flow reactors
- Catalysis-assisted phase separation for aqueous product recovery

High-Pressure Batch Reactors

High-Pressure Continuous Flow Reactors

Catalytic Upgrading Systems
- Interactions across laboratories
- Monthly project meetings
- Collaboration with ACSC, CCPC, Co-optima
- Diols
- Carboxylic Acids
- Furfural
- HMF
- Alcohols/Aldehydes/Ketones
2 – Approach (Management)

Interactions With Other Projects

Catalysis
- 2.5.1.30X Consortium for Computational Physics and Chemistry
- 2.5.4.304 Advanced Catalyst Synthesis and Characterization
- 2.5.4.301 Catalyst Cost Model Development

PABP/Separations
- 2.5.5.50X Separations Consortium

Biochemical Conversion
- 2.1.0.100 Biochemical Platform Analysis
- 2.2.3.100 Low Temperature Advanced Deconstruction
- 2.3.2.105 Biological Upgrading of Sugars
- 2.4.1.100 Bench Scale R&D

2.3.1.10X Catalytic Upgrading of Biochemical Intermediates

ADO Integration Scale-up
- 2.4.1.102 Pilot Scale Integration
2 – Approach (Technical)

- Multiple catalytic upgrading routes investigated and evaluated in a coordinated manner using common materials, analytical techniques, reactor systems, fuel characterization methods, and TEA tools

<table>
<thead>
<tr>
<th>Critical Success Factors</th>
<th>Challenges</th>
<th>Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Develop and identify catalytic upgrading to HC fuel routes that have commercial relevance and interest.</td>
<td>Numerous biochemical-derived intermediates are potential options, leading to multiple catalytic upgrading routes and approaches.</td>
<td>Coordination with Biochemical Conversion projects to focus on intermediates that are being actively developed and have cost-potential and market size for broad applicability.</td>
</tr>
<tr>
<td>Quantify impurity impacts from biochemical deconstruction/upgrading on catalytic upgrading routes (durability, efficiency, selectivity).</td>
<td>Biomass-derived catalyst inhibitors are from multiple sources: - Feedstock - Deconstruction process - Intermediates-production processes</td>
<td>Comparative assessment of pure intermediates and biomass-derived intermediates to determine specific impacts of potential catalyst inhibitors (including water).</td>
</tr>
<tr>
<td>Define specifications for deconstruction/fermentation streams for catalytic upgrading, including identification of separations/clean-up needs.</td>
<td>Multiple considerations in optimizing various conversion unit operations makes the definition of process-stream specifications challenging to meet overall TEA targets.</td>
<td>Coordinated efforts across projects and multi-lab consortia to focus on critical process-wide considerations: - Feedstock selection/specification - Separations/purification - Fundamental catalyst design/process</td>
</tr>
</tbody>
</table>
3 – Technical Accomplishments

- **Task 1**: 2-3-butanediol (BDO)
- **Task 2**: Carboxylic acids
- **Task 3**: Sugars/sugar-derived intermediates
- **Task 4**: Hydrolysate/fermentation broth production; techno-economic analysis
2,3-BDO to Fuel Intermediates and Co-Products

2,3-BDO from Corn Stover Hydrolysate

Advantages:
- 2,3-BDO produced at high titer due to low toxicity
- High distillate yield (~70% C from BDO in distillate)
- Many co-product opportunities: MEK, BD, epoxide, etc.

160 L Pilot Fermentation at NREL

- **87 g/L BDO**

NREL

Expertise in integrated biological and chemo-catalytic processes

Expertise in zeolites for biomass derived oxygenates

- US 2017/035649 A1

ChemCatBio
2,3-BDO to Fuel Intermediates and Co-Products

BDO to distillate via one-step olefin production

Catalysis Focus

- **Fermentation**
 - 2,3-BDO

- **Cu/Zeolite**
 - C\textsubscript{3}-C\textsubscript{6} olefins
 - (butenes dominate)

- **MEK**
 - Industrial solvent
 - Fuel additive

- **Diesel/Jet**
 - ORNL BDO derived distillate

Advantages
- One step highly selective production of C\textsubscript{3}-C\textsubscript{6} olefins
- Co-production of MEK – tune the co-product yield
- High distillate yield

Objective: Maximize C\textsubscript{3}-C\textsubscript{6} olefin selectivity via new catalyst design

- ORNL developed a new Cu/Pillared-MFI catalyst, enabling high yield of C\textsubscript{3}-C\textsubscript{6} olefins

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Single-pass conversion (%)</th>
<th>C\textsubscript{3}-C\textsubscript{6} Olefin Selectivity (%)</th>
<th>Productivity (g/g\textsubscript{cat}/h)</th>
<th>Durability (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY17 baseline</td>
<td>Cu/SiO\textsubscript{2}@ZrO\textsubscript{2}</td>
<td>100</td>
<td>30</td>
<td>0.18</td>
</tr>
<tr>
<td>Current</td>
<td>Cu/P-MFI*</td>
<td>100</td>
<td>90</td>
<td>0.55</td>
</tr>
</tbody>
</table>

*Cu/pillared MFI, 250°C, WHSV=1.0 h-1, 1 atm; #time on stream for each cycle, C\textsubscript{3}-C\textsubscript{6} olefin selectivity changes <20%

Outcome:
- Cu/P-MFI enables one step high yield of C\textsubscript{3}-C\textsubscript{6} olefins with stable performance.
- Set the state-of-the-technology for further development.
Objective: Demonstrate distillate production from 2,3-BDO
 - Via oligomerization of the mixed olefins, followed by hydrotreating

Outcome:
 - High distillate yield can be obtained from 2,3-BDO conversion.
 - BDO derived jet fuel meets preliminary fuel analysis criteria

- Preliminary fuel analysis: meet Jet A properties
 - Mainly C₈-C₁₆: normal, iso- and cyclic alkanes

- High overall carbon efficiency:
 - ~94% carbon in final fuels and products

<table>
<thead>
<tr>
<th></th>
<th>Jet A</th>
<th>BDO derived jet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (g/mL)</td>
<td>0.775 - 0.84</td>
<td>0.798</td>
</tr>
<tr>
<td>HHV (MJ/Kg)</td>
<td>46.2</td>
<td>46.7</td>
</tr>
<tr>
<td>Freezing Point (°C)</td>
<td>max -40</td>
<td>< -80</td>
</tr>
<tr>
<td>Aromatics (v/v %)</td>
<td>max 25%</td>
<td>< < 25%</td>
</tr>
</tbody>
</table>
Objective:
• Develop a marketable catalyst and process to upgrade 2,3-butanediol (BDO) to fuels.

2,3-butanediol upgrading to fuels via Methyl Ethyl Ketone (MEK) intermediate

Objective:
• Develop a marketable catalyst and process to upgrade 2,3-butanediol (BDO) to fuels.

2,3-butanediol upgrading to fuels via Methyl Ethyl Ketone (MEK) intermediate

Objective:
• Develop a marketable catalyst and process to upgrade 2,3-butanediol (BDO) to fuels.

2,3-butanediol upgrading to fuels via Methyl Ethyl Ketone (MEK) intermediate

Objective:
• Develop a marketable catalyst and process to upgrade 2,3-butanediol (BDO) to fuels.

2,3-butanediol upgrading to fuels via Methyl Ethyl Ketone (MEK) intermediate

Objective:
• Develop a marketable catalyst and process to upgrade 2,3-butanediol (BDO) to fuels.

2,3-butanediol upgrading to fuels via Methyl Ethyl Ketone (MEK) intermediate

ZnZrO_x Catalyst Stability demonstrated for >60 hr

Oligomerized Olefins: 90% in distillate range freezing point < -70 °C

<table>
<thead>
<tr>
<th>Time on stream (hours)</th>
<th>MEK conversion / olefins selectivity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>90</td>
</tr>
<tr>
<td>20</td>
<td>80</td>
</tr>
<tr>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>70</td>
<td>30</td>
</tr>
</tbody>
</table>

Stable in aqueous media (feed: 27%MEK/H_2O)

Distillation profile and freezing point are consistent with PNNL ATJ fuels that have passed AFRL testing and recently certified for jet fuel.

Outcome:
• Stable ZnZrO_x Catalyst
• Operates in aqueous media: BDO/water separation is not needed
• High quality fuel

Progress
Conversion ~ 90%

42% increase

Conversion

Project start
Current status
10/18
01/19

90% Fuel Precursor in Distillate Range

ASTM certified

PNNL-8-60
PNNL-8-36

Sample recovered (mass %)

Olefins selectivity (%)

100
80
60
40
20
0
0
20
40
60
80
100

0
100
200
300
400
500

Boiling point (°C)

MEK conversion / olefins selectivity (%)
Objective:
• Develop a marketable catalyst/process to upgrade 2,3-butanediol (BDO) to 1,3-butadiene (BD).
 – FY18 focus is on the 1st-stage catalyst (In$_2$O$_3$); the second stage MVC to BD is simple and gives high BD yields.

Outcome:
• BDO-to-MVC (In$_2$O$_3$, Stage 1) catalyst is very stable and demonstrated up to 100 hours time on stream.
• In$_2$O$_3$ catalyst: ~70% selectivity to MVC was achieved at BDO conversion >90%.
• Regeneration at 450 °C with air completely restores activity of the Stage 1 catalyst (BDO to MVC).
2,3-BDO to Fuel Intermediates and Co-Products

BDO – Single Step Conversion to Butadiene

Objective:
• Develop a single step catalytic conversion of 2,3-butanediol (BDO) to 1,3-butanediene (BD).

Dehydration Reaction Network for 1,3-Butadiene

Validated >90% Butadiene Yield with CsH₂PO₄

Outcome:
• Recovered BDO from post-fermentation hydrolysate and measured impurities and water content
 – Upgraded model and bio-derived BDO to 1,3-butadiene in yields >50% continuously for >4 h with CsH₂PO₄/SiO₂ – water content at 10% not a factor
 – Further tuning of catalyst and conditions allowed for >90% molar yield of butadiene
 – Steady state coking can result in the onset of rapid deactivation
 – Limit to loading support with CsH₂PO₄ - pore blockage and reduced surface area/activity
2,3-BDO to Fuel Intermediates and Co-Products

BDO – Single Step Conversion to Butadiene

Mapping of Reaction Pathways to Explain Selectivity

Characterization of Intermediates & Non-targets

Outcome:
- Active collaboration with **CCPC & ACSC** to evaluate mechanism and catalyst active site
- Ongoing work to experimentally corroborate proposed reaction pathways
- Actively testing catalyst regenerability, as well as impact of biogenic impurities

NREL
Ethanol and BDO as Bio-derived Building Blocks

Objective: Common fermentation products to a range of fuel and product intermediates

- **EtOH** → H₂ → \(\text{Amberlyst 15, Pd/C} \) → Ar/H₂ (94/6, 200 psi) → cyclohexane → 1. 60 °C, 1h → 2. 100 °C, 3h
- > 95 % isolated Yield

Application Towards BDO Separations

<table>
<thead>
<tr>
<th>Component</th>
<th>Glucose</th>
<th>Xylose</th>
<th>Arabinose</th>
<th>Galactose</th>
<th>BDO</th>
<th>Acetoin</th>
<th>Glycerol</th>
<th>Xylitol</th>
<th>Lactic Acid</th>
<th>Acetic Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>[g/l]</td>
<td>0.00</td>
<td>4.67</td>
<td>6.23</td>
<td>0.54</td>
<td>82.2</td>
<td>0.00</td>
<td>16.2</td>
<td>2.21</td>
<td>2.09</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Outcome:
- Tunable monomers branched and cyclic fuel intermediates
- New BDO separations approach

BDO recovery from dioxolanes achievable with mild acid – optimization underway.

• **Task 1**: 2,3-butanediol (BDO)
• **Task 2**: Carboxylic acids
• **Task 3**: Sugars/sugar-derived intermediates
• **Task 4**: Hydrolysate/fermentation broth production; techno-economic analysis
Carboxylic Acids Upgrading

Conversion Scheme for Butyric Acid Upgrading to Hydrocarbons

Objective:
Upgrade C4 acids to diesel hydrocarbon blendstock via ketonization (KET), condensation (COND), and HDO
Generate diesel fuel samples for fuel testing using target C14 HC monomer and complex hydrocarbon mixture

Outcome:
Butyric KET near theoretical carbon balance under complete conversion conditions and stable for >10 hours in flow with commercial ZrO2
4-Heptanone COND to C14 enone to increase ketone loading (20 wt%), lower catalyst loading (1:5 wt/wt), and show recycle with commercial Nb2O5
C14 enone HDO complete conversion with >84% selectivity to C14 HC and <2% cracking for >10 hours in flow with in-house Pt/Al2O3
Objective: Fully Integrated Demonstration of Catalytic Conversion Pathway

Outcome:

- **Linking all catalytic steps** showed increased HC complexity (67% C14) with full deoxygenation and 84% overall carbon yield to hydrocarbon product.

- **Isolated C14 HC has desirable** cetane, low sooting, and cold flow properties.

- **Complex HC blendstock was added into diesel** at 20 wt% (collaboration with Co-Optima) and reduced soot by 11%.

HC Blendstock and Blended Fuel Property Testing

<table>
<thead>
<tr>
<th>Properties</th>
<th>Blendstock Purified C_{14}</th>
<th>Crude C_{14}(^a)</th>
<th>Diesel and blend Base</th>
<th>Blend</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP (°C)</td>
<td>< -80</td>
<td>< -80</td>
<td>-7.6</td>
<td>-9.5</td>
</tr>
<tr>
<td>CP (°C)</td>
<td>< -80</td>
<td>< -80</td>
<td>-7.3</td>
<td>-12</td>
</tr>
<tr>
<td>BP (°C)</td>
<td>230</td>
<td>266(^c)</td>
<td>333(^e)</td>
<td>327</td>
</tr>
<tr>
<td>FP (°C)</td>
<td>74.4</td>
<td>ND</td>
<td>55.4</td>
<td>52.1(^d)</td>
</tr>
<tr>
<td>LHV (MJ kg(^{-1}))</td>
<td>44</td>
<td>44</td>
<td>45</td>
<td>43</td>
</tr>
<tr>
<td>LHV (MJ L(^{-1}))</td>
<td>34</td>
<td>34</td>
<td>39</td>
<td>37</td>
</tr>
<tr>
<td>ν (cSt)</td>
<td>ND</td>
<td>1.53(^d)</td>
<td>2.66</td>
<td>ND</td>
</tr>
<tr>
<td>Cetane</td>
<td>ND</td>
<td>48(^d)</td>
<td>47</td>
<td>46(^a)</td>
</tr>
<tr>
<td>Sooting index</td>
<td>91</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Soot conc.(^e)</td>
<td>ND</td>
<td>0.47</td>
<td>1</td>
<td>0.89</td>
</tr>
<tr>
<td>p (g mL(^{-1}))</td>
<td>0.78</td>
<td>0.78</td>
<td>0.86</td>
<td>0.85</td>
</tr>
</tbody>
</table>

\(^a\)Butyric acid derived blendstock (65% C\(_{14}\) purity).\(^b\)Butyric acid derived blendstock (61% C\(_{14}\) purity).\(^c\)T90 from simulated distillation profile.\(^d\)Commercial 4-heptanone derived blendstock (83% C\(_{14}\) purity).\(^e\)Normalized soot concentration, defined as the concentration of soot measured for a blendstock or a blend normalized to that of the base diesel (NSC = 1).
3 – Technical Accomplishments

Upgrading Approach

Biomass → Sugars → Upgrading Approach

Chemically derived intermediates
- Furfural
- Condensation
- HDO
- C10-C20 paraffins

Biologically derived intermediates
- Alcohols/Aldehydes/Ketones
- C-C Coupling
- HDO
- C8-C16 alkanes

- Carboxylic Acids
- Ketonization
- Condensation
- HDO
- C7-C20 paraffins

- Diols
- Multiple Approaches
- C8-C16 paraffins, MEK, 1,3-Butadiene

Transportation Fuels and Biochemical Products (diesel, jet, gasoline, etc.)

- Task 1: 2,3-butanediol (BDO)
- Task 2: Carboxylic acids
- Task 3: Sugars/sugar-derived intermediates
- Task 4: Hydrolysate/fermentation broth production; techno-economic analysis
Upgrading Furfurals to Distillate Hydrocarbons

Objective:
• Demonstrate production of furfurals (>50% yield) from mixed C5 + C6 sugars using Lewis/Bronsted acid catalysts.
• Demonstrate >25% (GGE basis) of fuel sample could be blended into jet or diesel fuel (Go/NoGo)

Outcome:
• Furfurals produced in high yield (80%) from corn stover hydrolysates with AlCl₃ catalyst, aqueous dioxane, 180 °C, 2 min. Sulfate inhibited AlCl₃ catalyst.
• Product had very good fuel properties: Cloud Pt -64 °C, CN 61, 60%/80% in jet/diesel boiling ranges.
Upgrading Furfurals to Distillate Hydrocarbons

Objective:
- Demonstrate aldol condensation on mixture of furfural and HMF and convert to hydrocarbon product by HDO
- Demonstrate aldol condensation with solid recyclable catalyst with minimal loss of yield/selectivity.

Outcome:
- Aldol condensation of HMF and furfural with MEK using NaOH gave C14-C16 intermediate (diadduct) in high yield
- HDO of intermediate produced HC for Go/NoGo
- Amberlyst A-26 (OH) strong anion exchange (SAE) resin can catalyze aldol condensation, but rate ~½ that of NaOH, probably due to resin’s lower alkaline strength.
Objective: Demonstrate continuous flow HDO performance for a central ketone intermediate

Outcome: Optimized using model system with cobalt catalyst: complete conversion and selectivity to hydrocarbon without isomerization with ~20 min space time. Catalyst lifetime being determined.
3 – Technical Accomplishments

• **Task 1**: 2,3-butanediol (BDO)
• **Task 2**: Carboxylic acids
• **Task 3**: Sugars/sugar-derived intermediates
• **Task 4**: Hydrolysate/fermentation broth production; techno-economic analysis
June 2018 Go/No Go Milestone

Determine techno-economic viability to achieve $3/gge when incorporating lignin co-product valorization (opportunities for < $3/gge with partial diversion of sugars/derived intermediates to co-products)

TEA Model Framework

• Deconstruction to sugars
 - Deacetylation and Mechanical Refining (DMR)
 • Enables lignin valorization for biochemical routes
 • Included in 2018 SOT and in new Biochemical Platform Design Report
 • Used for all CUBI cases, with identical process assumptions
• Solid - liquid separation
 - After enzymatic hydrolysis for carboxylic acids and furans routes
 - After fermentation for 2,3-BDO route
• Biological conversion to targeted intermediate OR dehydration to furfurals
• Catalytic upgrading to targeted HC fuel compounds
TEA Summary

All pathways have routes to $3/GGE

- Sensitivity analysis used to identify areas for catalytic process improvements
- Co-products from catalytic intermediates identify opportunities for < $3/GGE

Carboxylic Acid

2,3-BDO

Furfurals

TEA-Guided Future R&D:

- Reduce KET/Cond residence time
- Reduce solvent:ketone ratio
- Utilize lower-cost undoped ZrO₂

- Reduce BDO upgrading temperature
- Improve catalyst stability with fines/ash/ions in feed
- Divert BDO to MEK (example) - opportunity for <$3/GGE

- Reduce isomerization/dehydration temp.
- Reduce ratio of solvent to aqueous hydrolysate
4 – Relevance

Facilitating transition of catalytic upgrading of biochemically-derived intermediates from clean sugars/intermediates to biomass-derived sugars/intermediates in order to reduce overall process cost

Industry Relevance

• Comparative upgrading data and TEA analysis will inform industry of the relative opportunities for catalytic upgrading of process-relevant, biochemically-derived intermediates from lignocellulosic feedstocks
 – Approaches and methodologies can be extended to other industry-specific opportunities for HC fuels components and/or chemical products

Marketability

• ChemCatBio (www.chemcatbio.org) has an active industry outreach to leverage the capabilities and expertise of national labs to help solve specific industry problems or develop new, industrially-relevant capabilities
4 – Relevance

Support of BETO’s Mission: Conversion R&D Challenges and Barriers (2019 MYPP)

• “Need for both catalysts that are more tolerant of lower-quality feedstocks and for pretreatment and separation processes that eliminate contaminant species”
 • Ct-E: Improving Catalyst Lifetime

• “Need to identify catalysts and process conditions that increase overall yield... by direct improvements to catalyst performance”
 • CT-F: Increasing the Yield from Catalytic Processes

• “Understanding process integration is essential to characterize the interactions between unit operations, identify the impacts of inhibitors and contaminants on processing systems,”
 • ADO-A. Process Integration

Adapted from Table 2-5, BETO Multi-Year Program Plan (2019)
Task 1: Catalytic Upgrading of 2,3-butanediol (BDO)

- **Cu/zeolite optimization**
 - Structure and mechanism (CCPC/ASCS) – tune olefin composition
- **Fuel property optimization (with Co-Optima)**
- **Tune fuel properties to optimize oligomerization**
- **BDO to MEK**
 - Biogenic inhibitor effect on catalyst performance
 - Impact of actual hydrolysate/fermentation feed
 - NMR investigation of surface species and reaction pathway
- **BDO to MVC**
 - Synthesize high-surface area In$_2$O$_3$ catalyst – MVC selectivity
 - Impact of actual hydrolysate/fermentation feed
 - NMR investigation of surface species and reaction pathway
- **Phase separation of dioxylenes from aldehydes and BDO**
 - BDO recovery with recycle of aldehydes

FY19 Q2 Milestone:
- Key Catalytic Upgrading Process Improvements
 - Catalyst deactivation modes
 - Improved WHSV, utilize catalyst cost tool
 - New formulations to increase surface area

FY19 Q3 Milestone:
- Hydrolysate/Fermentation Inhibitor Assessment
 - Feedstock/hydrolysate derived compounds
 - Fermentation co-products
 - Water – recovery and separations
Task 2: Catalytic Upgrading of Carboxylic Acids

- Mixed acid (C2-C5) upgrading to address aviation and heavy duty fuel needs
 - Future experimental work to evaluate **mixed acids (C2-C5)** to expand potential feedstocks and upstream organisms suitable for acid-to-fuel pathway
 - **Mixed acids** can expand fuel options by generating both **isoparaffin and cycloparaffin HC** as products since both central & terminal ketones are produced as intermediates
 - **Water tolerance and coking** still issues during ketone condensation that will require further understanding of working catalyst surface and effective regeneration strategies

FY19 Q2 Milestone:
- Key Catalytic Upgrading Process Improvements
 - Improve ketone condensation catalyst regenerability by 10% by (i) aqueous treatment fouling coke burn off and (ii) modified burn off conditions (with CCPC)

FY19 Q3 Milestone:
- Hydrolysate/Fermentation Inhibitor Assessment
 - Assess impact of ≥3 impurities by comparing model and bio-derived C4 acid
 - >6 hr TOS for ketonization and HDO
 - Measure impurities at each upgrading step
Task 3: Catalytic Upgrading of Sugars/Sugar-derived Intermediates

• Furfurals upgrading
 – Investigate potential for generating furfurals directly from biomass polysaccharides without prior pretreatment and enzymatic hydrolysis.
 – Quantify effects of biomass derived furfurals on heterogenous catalysts used in producing hydrocarbons, particularly for the HDO step.
 – Generate at least 100 mL of hydrocarbons for fuel property testing with greater emphasis on tests for jet fuel compatibility.

• Piancatelli furan rearrangements

FY19 Q2 Milestone:
• Key Catalytic Upgrading Process Improvements
 – Produce biomass furfurals in flow reactor
 – Integrated unit operations for C-C formation and defunctionalization
 – Increase aldol condensation of acetaldehyde yield to ≥80%

FY19 Q3 Milestone:
• Hydrolysate/Fermentation Inhibitor Assessment
 – Quantify effect of biomass-derived furfurals
 – Catalyst characterization: top 3 poisons
 – Determine tolerance levels for top 3 poisons
• Show that varying MOF properties can improve acetaldehyde coupling to 50% yield
5 – Future Work

Task 4: Hydrolysate/Fermentation Broth production; Techno-economic Analysis

- **End-of-project TEA assessment**
 - Coordinated with Biochemical Platform TEA assessment for annual State-of-Technology projections
 - Includes catalytic upgrading process configuration and results from CUBI project
 - Use of ChemCatBio Catalyst Cost Modeling tool
 - Describe relative levels of development for each CUBI route; identify leading pathway(s) and remaining research needs to achieve ≤$3/gge

FY19 Q4 (end-of-project) Milestone:
- Quantify catalytic upgrading performance using biochemical conversion process-derived intermediates in a fully integrated TEA model.
 - Develop biochemical catalytic upgrading State-of-Technology pathway(s) and targets that achieve a modeled Minimum Fuels Selling Price (MFSP) of $3/gge (2016 $) with value-added lignin co-products (or <$2.5/gge (2016 $) with diversion of a portion of sugars/biological intermediates to co-products).
Approach

- Common/shared:
 - Process materials
 - Analytical methods
 - Reactor systems
 - Fuel assessment
 - TEA tools and approaches

- Integrated task structure

- Biochemical Platform leveraging for targeting process intermediates

- Go/no-go decision used to identify catalyst and process improvements

Accomplishments

- **2,3-BDO Upgrading:**
 - Multiple routes for fuels and co-products; coordination with enabling ChemCatBio projects

- **Carboxylic Acids Upgrading:**
 - Focus on C4 acids; integrated demonstration of all catalytic steps with improved yield/selectivity

- **Sugars-Derived Upgrading:**
 - High yields from hydrolysate-derived furfurals; high cetane distillate via aldol condensation; continuous HDO improvements

- **Process Intermediates/TEA:**
 - Go/no go identified key areas for process improvement; pilot scale generation of hydrolysates and fermentation intermediates

Relevance

- Addresses key commercialization barriers associated with biochemical conversion streams

- Developing comparative data and TEA on several approaches

- ChemCatBio collaborations and industry outreach

Future Work

- **2,3-BDO Upgrading:**
 - Catalyst/process improvements; inhibitor identification/mitigation; phase separation/recovery

- **Carboxylic Acids Upgrading:**
 - Catalyst/process improvements; inhibitor identification/mitigation; mixed acids assessment

- **Sugars-Derived Upgrading:**
 - Catalyst/process improvements; inhibitor identification/mitigation; furfurals from polysacch.; furan rearrangement

- **Process Intermediates/TEA:**
 - End-of-project TEA assessment and identify leading routes for ≤$3/gge

Summary

Evaluating several routes for catalytic upgrading of sugars and sugar-derived intermediates into hydrocarbon fuels and co-products and selecting routes(s) that can achieve $3/gge in 2022.
Acknowledgements

Bioenergy Technologies Office
Nichole Fitzgerald
Jeremy Leong

F. Baddour Y. Kim
S. Black A. Mittal
X. Chen H. Pilath
N. Cleveland R. Spiller
D. Conklin J. Stunkel
R. Davis L. Tao
N. Dowe M. Tucker
S. Habas W. Wang
X. Huo
E. Jennings
R. Katahira
S. Kim

S. Adhikari
M. Hu
M. Lu
S. Majumdar
J. Parks
T. Toops
K. Unocic
J. Zhang
T. Krause (ANL)
E. Wegener (ANL)
C. Yang (ANL)

R. Jenkins
J. Leal
C. Moore
T. Rajale
T. Semelsberger
O. Staples
R. Wu

M. Flake
T. Lemmon
M. Lilga
A. Martinez
S. Subramaniam
M. Swita
Additional Slides
Responses to Previous Reviewers’ Comments

• “The production of biochemical intermediates and their conversion to chemicals and fuels is increasingly recognized as the most promising route for replacing fossil fuels with biomass. This route is the best suited to take advantage of the available biomass and the potential growth in high yield varieties grown specifically for fuels, as outlined in the 2016 Billion-Ton Report.”
 – Large-volume feedstocks (herbaceous, ag. residues) as source of hydrolysate sugars
 – Inhibitor effects (from biomass, deconstruction process, fermentation co-products, water, etc.) on catalytic upgrading being characterized; inhibition mechanisms and mitigation strategies being developed

• “The teams have done a great job in exploring the potential routes feasible that will maximize the use of all the carbon versus other approaches. It requires complex chemistry to achieve all the processing steps commercially at economics, but the team has the right approach to narrow the possibilities and should continue to attempt to combine steps into one or two where feasible.”
 – Efforts are primarily focused on routes aligned with broader biochemical conversion platform (carboxylic acids, BDO, sugars/furans)
 – Process intensification examples for upgrading routes:
 o Multi-functional catalysts and reaction schemes (BDO)
 o Combining C-C coupling and HDO
Responses to Previous Reviewers’ Comments

• “The project has clearly demonstrated the chemistry can work. The focus should begin to shift towards optimizing the process to provide data to the technoeconomic analysis (TEA) by choice of catalyst and reactor conditions. Scale-up to produce sufficient quantities to allow product evaluation should be considered as a next step.”
 – Catalyst development and upgrading process development focused on cost reduction approaches (catalyst formulation cost, process intensification, etc.)
 – Switch to BDO as an intermediate driven by upstream TEA considerations
 – Comparative TEA analyses performed based on project results (2018 Go/No Go)
 – Fuel testing of 50 mL samples for product evaluation conducted (2018 Go/No Go)

• “There is significant prior work involving these routes. The next step should be to place these in a commercial context and conduct careful TEA on the same basis. The performance of each of the routes needs to be benchmarked against the prior work both in government and in outside laboratories.”
 – Initial TEA analysis being conducted on a comparative basis, including deconstruction and biological production of intermediates
 – Future catalyst performance and TEA is being benchmarked against any relevant commercial approaches (some catalytic upgrading steps use current commercial catalyst formulations)
 – ChemCatBio Catalyst Cost Modeling tool will be used in end-of-project TEA
Responses to Previous Reviewers’ Comments

• “Overall, great work—this program’s focus on sugar conversions is showing that it can efficiently produce narrow product distributions and also products with high value. This is a result that continues to elude whole-biomass conversion and therefore is a solid step forward. However, technical success is different than commercial or strategic success, and the number of steps required to take sugars all the way to hydrocarbon fuels is concerning.”
 – TEA is identifying process intensification opportunities
 – Characterization of inhibitor effects and needed process steps to mitigate inhibitors is underway (FY19 milestone)
 – Catalyst robustness/durability is a key process metric for both conversion performance and accurate representation in TEA models

• “It is possible that the program would contribute to the fuel supply in a more constructive manner if focus was on increasing availability/decreasing costs of fuel additives like antioxidants, octane boosters, multifunctional additives, fuel oil additives, etc. Fuel is not a neat chemical; it is an engineered mixture with numerous components, and if there are components that can be generated more efficiently from sugars than petroleum, that would be most helpful.”
 – Fuel testing/analysis has identified properties and fuel component value opportunities from each route
 – Fuel products with specific molecules having targeted functional properties (i.e. jet fuel) have been identified
Publications

Publications (cont.)

- R. W. Jenkins, X. Yang, J, Leal, C. M. Moore, T. A. Semelsberger, A. D. Sutton, “Continuous heterogeneous hydrodeoxygenation of bio-derived ketones for fuels and feedstock production” Submitted
Presentations

- D.K. Johnson. Production of advanced biofuels for blending into jet and diesel fuels via furanic intermediates”, Frontiers in Biorefining Conference, November, 2016, St Simons Island, GA.
Presentations (cont.)

Patents

- Catalysts for Conversion of 2,3-butanediol-containing fermentation mixture to hydrocarbons, Z. Li, US 16/059,512, filed on August 9, 2018.
Conversion of glucose to HMF catalyzed by Lewis acids at low HCl concentrations
- Molecular dynamics simulations show catalysis conforms to hard-soft acid-base theory
- 1,4-Dioxane co-solvent found to give much higher yields of HMF than water-immiscible solvents (shaded in figure).
Upgrading Furfurals to Distillate Hydrocarbons

Production of high-cetane distillate via aldol condensation of furfurals followed by HDO

- HDO of aldol condensation products give isoparaffins excellent for blending in jet or diesel.
- Catalysts with acidic silica-alumina supports (MS-13 & -25) needed to produce HCs.
- Pd and Pt catalysts have proven to be the best so far.
- Loss of C during HDO of F2M and model 1,12-dodecandiol is not explained by support acidity, but is more likely due to the nature or dispersion of metal on catalyst surface.

NMR shows HDO Mechanism

Effect of Catalyst on HC Yield from F2M

Effect of Catalyst on HC Yield from C_{12}H_{24}(OH)_{2}

6MT = 6-methyl tridecane; 6MD= 6-methyl dodecane

DD = dodecane; UD = undecane; D = decane
Objective: Common fermentation products to a range of fuel and product intermediates

Ethanol and BDO as Bio-derived Building Blocks

Outcome:
- Tunable monomers branched and cyclic fuel intermediates
- Potential chemical co-product targets identified

Staples *et al.*, Sustainable Energy Fuels, 2018, Advance Article
Objective: Isolation of BDO using phase separation approaches

<table>
<thead>
<tr>
<th>Component</th>
<th>Glucose</th>
<th>Xylose</th>
<th>Arabinose</th>
<th>Galactose</th>
<th>BDO</th>
<th>Acetoin</th>
<th>Glycerol</th>
<th>Xylitol</th>
<th>Lactic Acid</th>
<th>Acetic Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>[g/l]</td>
<td>0.00</td>
<td>4.67</td>
<td>6.23</td>
<td>0.54</td>
<td>82.2</td>
<td>0.00</td>
<td>16.2</td>
<td>2.21</td>
<td>2.09</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Outcome:
- Several aldehydes facilitate BDO selective separation
- Recovery of BDO achievable using mild acid

NREL BDO Broth received – real trials underway