AMM Program Review Dec 4–6, Knoxville, Tennessee

Enhancing irradiation tolerance of steels via nanostructuring by innovative manufacturing techniques

Haiming Wen wenha@mst.edu

Department of Materials Science and Engineering Department of Mining and Nuclear Engineering Missouri University of Science and Technology

Acknowledgements

- Students and postdoc working on the project: Andrew Hoffman, Jiaqi Duan, and Maalavan Arivu.
- Rinat Islamgaliev from Ufa State Aviation Technical University is thanked for providing samples.
- Nuclear Science User Facility is acknowledged for supporting neutron irradiation work, especially Keith Jewell (NSUF Technical Lead) and Katie Anderson and Leslie Soderquist (Experiment Manager).
- Co-PIs: James Cole, Yongfeng Zhang, Isabella van Rooyen at INL.
- This research is financially supported by U.S. Department of Energy, Office of Nuclear Energy through the NEET-NSUF (Nuclear Energy Enabling Technology - Nuclear Science User Facility) program (award number DE-NE0008524).

Why We Go into NANO

Strengthening mechanisms:

A. Work hardening: dislocation-dislocation interaction

B. Solid solution strengthening: solute-dislocation interaction

<u>C. Particle strengthening</u>: dislocation-particle interaction Including precipitate strengthening and dispersion strengthening

D. Grain boundary strengthening: dislocation-grain boundary interaction

Hall-Petch relationship:

$$\sigma_{\rm y} = \sigma_0 + k_{\rm y} \cdot d^{-1/2}$$

 σ_0 , k_y: material constants

Nanocrystalline material: single or multiple-phase polycrystals with structural features (typically grains) smaller than 100 nm

- D=5 nm, fraction of GBs=50%
- + D=100 nm~1 $\mu m,$ ultrafine grained materials; D=1~10 $\mu m,$ fine grained

materials; D>10 µm, coarse grained conventional materials

H. Gleiter, in Proceedings of the second Ris ϕ International Symposium on Metallurgy and Materials Science,1981, Denmark: Ris ϕ National Laboratory, Roskilde

GBs as Sinks for Irradiation Defects

- In-situ TEM imaging during ion irradiation of NC Ni films
- Grain boundaries as sinks for irradiation-induced dislocation loops and segments

Sun C, et al., Metall Mater Trans A 44 (2013) 1966

Ion Radiation Resistance of UFG 304 Steel

Sun C, et al., Scientific Reports 5 (2015) 7801

- Much smaller void density and void swelling in UFG sample
- Much higher strength of UFG sample

5

Lavernia EJ, et al., Progress in Materials Science 51 (2006) 1

Severe plastic deformation (SPD)

Equal-channel angular pressing

Funded by DOE, Office of Nuclear Energy through the NEET-NSUF program (award number DE-NE0008524). 10/1/2016 - 09/30/2023.

Sample Preparation Using Severe Plastic Deformation

					High pressure torsion (HPT)	Material	Technique	Temp (°C)	# of	
Element	SS304	SS316	G91	Kanthal-					passes/turns	
				D		SS 304	НРТ	300	10	
Fe	Balance	Balance	Balance	Balance		SS 316	НРТ	300	10	
Cr	17.22	16.18	8.38	20.57		Grade 91	НРТ	300	10	
Ni	9.56	12.24	0.17	0.26	raaaaa	Kanthal D	НРТ	300	10	
С	0.03	0.02	0.11	0.026		SS 304	ECAP	450	6	
Мо	0.12	2.47	0.9	-		SS 316	ECAP	380	6	
V	0.04	0.04	0.2	0.03		Grade 91	ECAP	300	6	
Ti	0.26	0.32	-	0.02	Equal-channel angular pressing (ECAP)	Kanthal D	ECAP	520	6	
Cu	0.16	0.23	0.17	0.02	Plunger	(b)				
Si	0.24	0.37	0.46	0.24		Route A		Route B c		
W	0.04	0.04	-	-						
Р	0.03	0.03	0.01	-	Φ					
Mn	-	-	0.43	0.18	Ψ	Route B		Route C		
Nb	-	-	0.06	-	Sample		⁹⁰			
						(/////	/// \//////	TA (///////		

Hardness Testing of Austenitic Steels

Hardness/Estimated Yield Stress

- Hardness tested using Vickers microindenter
- HPT samples having extremely high microhardness (~540 Hv, ~1.8 GPa estimated tensile strength)
- Hardness of HPT higher due to smaller grain size, higher strain, and more precipitate hardening
- Difference between the hardness of ECAP 316 and 304 may come from the difference in processing temperature (380 vs 450 °C)

XRD Results for Austenitic Steels

•

Sample	Strain (%)	CSD Size (nm)	Dislocation ρ (m^-2)
HPT 316	0.38	28	2.6 x 10^15
HPT 304	0.43	36	2.3 x 10^15
ECAP 316	0.33	58	1.1 x 10^15
ECAP 304	0.17	67	5.0 x 10^14
CG 316	0.013	281	8.9 x 10^12
CG 304	0.047	349	2.6 x 10^13

- Only austenite peaks in all samples
- Significant texture in γ-220 after ECAP in both samples
- Significant peak broadening due to dislocations/small grains
- CSD and micro-strain estimated using Williamson-Hall method
- HPT samples have smallest crystallite sizes, largest micro-strains and highest dislocation densities

Grain Structure/Dislocations in Austenitic Steels

- ECAP show many dislocation networks/cells
- Grain size difficult to measure in TEM
- HPT samples have much more defined grain structure with many equiaxed grains
- Grain size on the order of 150 nm

Segregation/Precipitation in 304 after HPT

Distance (nm)

•

- Significant segregation of Mn, Si, Ni, and P along grain boundaries
- Cu nanoprecipitates near/along grain boundaries, Ni-Mn-Si enriched particles along grain boundaries, needle like Cr particles
- Segregation behavior attributed to high defect density/flux

As ECAPed 304 microstructure

- Large number of low angle grain boundaries •
- Microstructure not homogeneous (still in • early stages of grain refinement)
- Some signs of carbides forming in dislocation dense regions

60

Annealing of ECAP and HPT 304

- Microhardness measured after thermal annealing as a measure of retained properties after annealing
- Both ECAP and HPT samples are shown to be stable up to 600 °C
- Noticeable increase in hardness in the HPT 304 sample at 500 °C possibly due to the formation of precipitates

Annealing Effects on ECAP 304

- No decrease in hardness after annealing below 700 C
- Increase in annealing temperature causes decrease in texture
- Significant recrystallization after annealing at 700 C, Cr enriched M₃C precipitation also occurs

Overview of ECAP and HPT 316

- Cr enriched (assumed to be carbides) regions in HPT 316
- No secondary phases in ECAP 316
- ECAP and HPT 316 have different thermal stability, ECAP stable up to 600 C, HPT stable up to 500 C

Hardness Testing of Ferritic Steels

- Improvement in hardness after SPD not as dramatic as in austenitic steels
- HPT Grade 91 shows uniform hardness up to ~4mm; HPT Kanthal D shows uniform hardness up to ~2mm
- Hardness of HPT ferritic steels not as uniform as HPT austenitic steels

XRD Results for G91 and Kanthal-D

Sample	Microstrain (%)	Crystallite size (nm)	Dislocation ρ (m^-2)
CG	0.054	149	5.0 x 10^13
ECAP	0.146	80	2.7 x 10^14
НРТ	0.42	43	1.4 x 10^15

Sample	Microstrain (%)	Crystallite size (nm)	Dislocation ρ (m^-2)
CG	0.021	280	1.1 x 10^13
ECAP	0.087	101	1.2 x 10^14
HPT	0.29	40	1.0 x 10^15

Microstructure of ECAP G91

 $M_{23}C_6\,$ M=Cr, Mo Average: 116 nm Number density: 0.46x10^{12} m $^{-2}$ Area Fraction: 2.1%

MX M=Nb, V Average: 59 nm Number density: 0.32x10¹² m ⁻² Area Fraction: 0.41%

Annealed microstructure of ECAP G91

Microstructure is stable up to 500-550°C

Very inhomogeneous microstructure formed during annealing above 650°C, suggesting recrystallization.

Annealed microstructure of HPT G91

Microstructure of HPT and ECAP Kanthal-D

ECAP

HPT has grain size ~100nm with homogenous microstructure
ECAP has grain size ~500nm with inhomogeneous microstructure

Transmission Kikuchi Diffraction

HPT

Transmission Electron Microscopy

Thermal Stability of SPD Kanthal-D

ECAP annealed at various temperatures

HPT annealed at various temperatures

• ECAP stable up to ~550 C

- HPT unstable at 500 C showing significant drop in hardness
- Difference in stability maybe be due to difference in grain boundary characteristics

Microstructure of annealed SPD Kanthal-D

27

Cr Carbide Precipitation

- Cr enriched carbides found in ECAP Kanthal-D
- No Cr enriched carbides in as HPTed sample, but they appear after annealing at 500 C
- No Cr enriched carbides in coarse grained Kanthal-D after annealing at 500 C
- Grain refinement enhances carbide precipitation at ~500 C

Summary of Pre-irradiation Characterization

- HPT and ECAP processing significantly improves the hardness/strength of steels.
- Grain size of HPT samples is smaller (~100nm) than ECAP samples (~400nm), and dislocation density of HPT samples is higher than ECAP samples.
- ECAP samples show texture while HPT samples do not.
- Second-phase particles found in each sample:
 - ECAP 304: small amount of M₂₃C₆ and M₃C
 - HPT 304: Ni-Mn-Si precipitates, Cr precipitates, and Cu-rich precipitates
 - ECAP 316: no second-phase particles/precipitates found so far
 - HPT 316: cementite and Cr-rich M₂₃C₆
 - HPT Grade 91: Cr-rich M₂₃C₆, Nb-rich MX phase
 - ECAP Grade 91: Cr-rich M₂₃C₆, Nb-rich MX phase
 - HPT Kanthal-D: ZrN particle
 - ECAP Kanthal-D: Cr-rich carbides, ZrN particle
- Both ECAP and HPT 304 samples shown to be thermally stable up to 600 °C, ECAP 316 stable up to 600 °C, HPT 316 stable up to 500 °C, ECAP Grade 91 stable up to 550 °C, HPT Grade 91 stable up to 500 °C, ECAP Kanthal-D stable up to 550 °C, HPT Kanthal-D unstable above 500 °C

Neutron irradiation

AMM Program Review Dec 4–6, Knoxville, Tennessee

Enhancing irradiation tolerance of steels via nanostructuring by innovative manufacturing techniques

Haiming Wen wenha@mst.edu

Department of Materials Science and Engineering Department of Mining and Nuclear Engineering Missouri University of Science and Technology

