Irradiation Performance Testing of Specimens Produced by Commercially Available Additive Manufacturing Techniques

> King Research Group Dr. Jeffrey King Ryan Collette, Mark Graham, Trace Rimroth, Cliff Ghiglieri

> Advanced Methods for Manufacturing Program Review December 4-6, 2018

COLORADOSCHOOLOFMINES. EARTH • ENERGY • ENVIRONMENT

Relevance

- The nuclear industry is likely to benefit from additive manufacturing
 - Power conversion (small capillary heat exchangers, pipes, turbine blades)
 - Structural components (core plate assembly, channel grids, spacers, nozzles, plugs)
 - Fuel & Cladding (optimized geometries)
- Circumvents conventional constraints
 - Unique geometries
 - Rapid prototyping
 - Legacy parts
- Several irradiation studies are underway to start the process of qualifying AM metals for reactor use
 - GE Hitachi
 - Westinghouse

AM Heat exchanger (GE)

AM Lower tube socket for the CAP1400 nuclear fuel assembly (China National Nuclear Corporation) BWR/6 FUEL ASSEMBLIES & CONTROL ROD MODULE

> 2.CHANNEL FASTENER 3.UPPER TIE PLATE 4.EXPANSION SPRING 5.LOCKING TAB 6.CHANNEL 7.CONTROL ROD 8.FUCL ROL 9.SPACER 10.CORE PLATE 10.CORE PLATE 10.CORE PLATE FUEL SUPPORT PIECE FUEL SUPPORT 15.CHANNEL

World Nuclear Association

Challenges

- Nuclear Industry implementation is limited by a lack of understanding regarding AM processing-structure-property relationships
 - Particularly related to irradiation performance

Barakah nuclear power plant (UAE)

Irradiation Performance

- Build up of defects results in material changes
 - Low-dose hardening and embrittlement
 - High-dose phase instabilities, creep, swelling, helium-embrittlement

Project Overview

- Test the performance of "commercially-available" AM materials in an irradiation environment
- Samples to undergo mechanical (tensile), thermophysical (laser flash/differential scanning calorimetry), and microstructural characterization (x-ray, SEM, TEM, EBSD, serial sectioning)

Specimen ID	Material	Method	Machine	Provider	Heat Treatment					
SS P1	SS-316L	Laser Powder Bed	EOS M290	Elementum 3D	SR1					
SS P2	SS-316L	Laser Powder Bed	ProX320B	3D Systems	SR1					
SS P3	SS-316L	Laser Free Form	Optomec	INL	SR1					
SS P4	SS-316L	E-Beam Wire Feed	Sciaky	Naval Reactors	SR1					
SR1 - Stress relieved @ 1650 F for 3.25 hours, air cool										
J' Specimen ID	Material	Method	Machine	Provider	Heat Treatment					
J Specimen ID IN P1	Material IN-718	Method Laser Powder Bed	Machine EOS M290	Provider Elementum 3D	Heat Treatment AMS 5664					
Specimen ID IN P1 IN P2	Material IN-718 IN-718	Method Laser Powder Bed Laser Powder Bed	Machine EOS M290 ProX320B	Provider Elementum 3D 3D Systems	Heat Treatment AMS 5664 AMS 5664					
Specimen ID IN P1 IN P2 IN P3	Material IN-718 IN-718 IN-625	Method Laser Powder Bed Laser Powder Bed Laser Powder Bed	Machine EOS M290 ProX320B EOS M290	Provider Elementum 3D 3D Systems Elementum 3D	Heat Treatment AMS 5664 AMS 5664 AN1					

AMS 5664 - Heat treat per AMS 5664 (solution anneal and aging) AN1- Anneal at 870 °C for 1-hour, rapid cool

Project Plan

• Test the performance of "commercially-available" AM materials in an irradiation environment

		SS-316L	SS-P1	15-45 μm LPW	40 µm	Proprietary	Proprietary	Argon
Laser Powder Bed	Elementum 3D	IN-718	IN-P1	15-45 μm Truform (Praxair)	40 µm	Proprietary	Proprietary	Argon
		IN-625	IN-P3	15-45 μm Truform (Praxair)	40 µm	Proprietary	Proprietary	Argon
Laser Powder Bed	3D Systems	SS-316L	SS-P2	Oerlikon Metco	30 µm	85, 215 W	450, 900 mm/s	Vacuum
		IN-718	IN-P2	15 μm LaserForm	30 µm	115, 220 W	625, 1180 mm/s	Vacuum
Laser Free Form	INL	SS-316L	SS-P3	-	-	400 W	150 g/hr	Argon
E-Beam Wire	Naval Reactors	SS-316L	SS-P4	-	-	N/A	20 lb/hr	Vacuum
Feed	Lockheed Martin	IN-718	IN-P4	-	-	N/A	-	Vacuum

SS-316L: Stress relieved @ 1650 °F (899 °C) for 3.25 hours, air cool

IN-718: Heat treat per AMS 5664 (solution anneal @ 1065 °C for 1 hour and aging @ 760 °C for 10 hours and 650 °C for 8 hours) IN-625: Anneal at 870 °C for 1-hour, rapid cool

As-built billets

Skinned billets &

Tensile specimens &

Laser Powder Bed Fusion

Laser Powder Free Form (Directed Energy Deposition)

Optomec MR7

Electron Beam Wire Feed (Directed Energy Deposition)

Sciaky

Pre-irradiation Characterization

- A pre-irradiation characterization study verified that the billets met the minimum requirements necessary to produce specimens suitable for irradiation in the ATR
- Density
 - All theoretical densities must be above 95%
- Microhardness
 - No significant hardness gradients or inconsistencies
- SEM/EDS
 - Elemental composition is as expected
- Optical Microscopy

- Microstructure is consistent across each sample
- The microstructure is free of large voids or unreacted material that could cause specimen failure

Density

- The potential for AM samples to have excessive porosity was a major concern prior to reactor insertion
- Irradiated parts should have > 95% density

8.44

• Simple density calculations demonstrations is not a concern for these billets

7.95

8.18

8.19

8.39

97.93 98.93 99.38

99.35

99.58

99.61

99.36 98.21

Microhardness (cont.)

•

- Some work hardening from sample skinning was observed on individual faces
 - Hardening depth was small (< 1 mm) and did not impact specimens
 - Data from these faces were not included in the global aver
 - Results were otherwise consistent. No major identified 50 g a 400 50 g a 400 50 g a 50

Electron Microscopy

- One sample of each material was examined in three locations across each polished face to verify sample composition and uniformity
- SEM imaging provided expected results

IN-P4 backscatter SEM image

Energy-dispersive X-ray Spectroscopy (EDS)

Optical Microscopy

- Polished samples etched using Kalling's no. 2 reagent
- Images taken on a Keyence VHX-5000
- Full surface scans looked for significant porosity and/or anisotropy in crystallographic size or orientation
- Results highlight the microstructures associated with the different AM methods

CSM Physical Metallurgy Lab

ADAPT's Keyence Microscope

Laser Powder Bed SS-316L (ProX)

- Clear dependence on build orientation
 - Chessboard-type grain pattern normal to build direction
 - Elongation along the build direction
 - Strongly textured

Laser Powder Bed Inconel-718

Laser Powder Free Form SS-316L

- Imbricated (fish-scale) features perpendicular to the build path
 - Present in most samples prior to heat treating
- Grains appear to form independently of the melt path, spanning across boundaries of the raster pattern
- INL had some concern about pauses during printing, but microstructural evidence was not obvious
 - Possibly eliminated by heat treatment

E-beam Wire Feed SS-316L

- Feature size is significantly larger compared to powder fusion machines
 - Imbricated pattern still visible without magnification after heat treatment
- Dendritic features orient themselves relative to the build direction
- Growth pattern is interrupted and

Paralle

Perpendicular

200 µm

Dendrites

Next Steps

•

- Irradiation is in progress (specimens to be shipped to HFEF in April)
- Mechanical and thermophysical testing of control (nonirradiated) specimens is in progress at Mines
- Post-irradiation testing and examination to be conducted by the NSUF
- Compare data and draw conclusions that could aid in the qualification of AM processes for nuclear applications
- Additionally, consider how the sub-grain cellular defect structures resulting from many AM methods might impact irradiation performance

Sub-Grain Cellular Structures - Motivation

- Recent papers in the AM literature have demonstrated improved mechanical properties compared to wrought metals
 - Simultaneously increased strength and ductility

Sub-Grain Cellular Structures - Motivation (cont.)

- These results are attributed to cellular structures formed during rapid solidification
 - Cell walls consist of a network of dislocations and segregated alloying elements
 - These walls limit dislocation motion (strengthening) but also allow for continuous plastic flow by transmitting the impeded dislocations through them
 - Segregated elements pin the dislocation network and maintain its size

Wang et al., Nature Materials, October 2017

Consequences of Heat Treatment

- Annealing SS-316L at 1050 °C for 2 hours wiped out the cellular dislocation network
 - Current irradiation studies may not capture the impact of these structures

Liu et al., Materials Today, May 2018

The Problem

- The impact of this effect is two-fold
 - Better than wrought
 - Highlights the potential to customize the microstructure to the application
- Advanced structures like this one could be a boon for nuclear
- However, nuclear changes the equation
 - Corrosive environment
 - Thermal flux
 - Radiation flux

• Will the cellular structures survive?

- Do they break down?
- At what point?
- Even if they are annihilated, what impact do the structures have on long-term irradiation performance?

Acknowledgements

- Nuclear Science User Facilities
- Elementum 3D, 3D Systems, Idaho National Laboratory
 - Sample development and printing
- Lockheed-Martin, Naval Reactors
 - Less common source material
- Alliance for the Development of Additive Processing Technologies (ADAPT)

Questions/Comments?